On Choosing and Bounding Probability
暂无分享,去创建一个
[1] P. Diaconis,et al. LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .
[2] A. Szulga. On Minimal Metrics in the Space of Random Variables , 1983 .
[3] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[4] J. Hartigan. The maximum likelihood prior , 1998 .
[5] F. Su. Discrepancy Convergence for the Drunkard's Walk on the Sphere , 2001, math/0102205.
[6] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[7] Yu. V. Prokhorov. Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .
[8] B. Lindsay. Efficiency versus robustness : the case for minimum Hellinger distance and related methods , 1994 .
[9] Walter R. Gilks,et al. Introduction to general state-space Markov chain theory , 1995 .
[10] T. N. Sriram. Asymptotics in Statistics–Some Basic Concepts , 2002 .
[11] R. Dudley. Distances of Probability Measures and Random Variables , 1968 .
[12] Alison L. Gibbs,et al. Convergence of Markov chain Monte Carlo algorithms with applications to image restoration , 2000 .
[13] R. Reiss. Approximate Distributions of Order Statistics , 1989 .
[14] F. Su. Convergence of random walks on the circle generated by an irrational rotation , 1998 .
[15] Ludger Rüschendorf,et al. Distributions with fixed marginals and related topics , 1999 .
[16] S. Orey. Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities , 1971 .
[17] Jim Freeman. Probability Metrics and the Stability of Stochastic Models , 1991 .
[18] V. Strassen. The Existence of Probability Measures with Given Marginals , 1965 .
[19] I. Vajda,et al. Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.
[20] R. M. Dudley,et al. Real Analysis and Probability , 1989 .
[21] P. Diaconis,et al. Updating Subjective Probability , 1982 .
[22] David Williams,et al. Probability with Martingales , 1991, Cambridge mathematical textbooks.
[23] L. Cam,et al. Théorie asymptotique de la décision statistique , 1969 .
[24] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[25] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[26] S. Kullback,et al. A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.
[27] S. Kakutani. On Equivalence of Infinite Product Measures , 1948 .
[28] V. V. Petrov. Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .
[29] J. Linnik. An Information-Theoretic Proof of the Central Limit Theorem with Lindeberg Conditions , 1959 .
[30] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[31] P. Diaconis. Group representations in probability and statistics , 1988 .
[32] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[33] P. Diaconis,et al. Strong uniform times and finite random walks , 1987 .
[34] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[35] T. Lindvall. Lectures on the Coupling Method , 1992 .
[36] R. Z. Khasʹminskiĭ,et al. Statistical estimation : asymptotic theory , 1981 .
[37] V. M. Zolotarev,et al. Addendum: Probability Metrics , 1984 .