Analysis of blocking dynamic circuits

In order for dynamic circuits to operate correctly, their inputs must be monotonically rising during evaluation. Blocking dynamic circuits satisfy this constraint by delaying evaluation until all inputs have been properly setup relative to the evaluation clock. By viewing dynamic gates as latches, we demonstrate that the optimal delay of a blocking dynamic gate may occur when the setup time is negative. With blocking dynamic circuits, cascading low-skew dynamic gates allows each dynamic gate to tolerate a degraded input level. The larger noise margin provides greater flexibility with the delay versus noise margin tradeoff (i.e., the circuit robustness versus speed tradeoff). This paper generalizes blocking dynamic circuits and provides a systematic approach for assigning clock phases, given delay and noise margin constraints. Using this framework, one can analyze any logic network consisting of blocking dynamic circuits.

[1]  Tyler Thorp,et al.  Design and synthesis of monotonic circuits , 1999, Proceedings 1999 IEEE International Conference on Computer Design: VLSI in Computers and Processors (Cat. No.99CB37040).

[2]  C. H. Stapper,et al.  High-speed on-chip ECC for synergistic fault-tolerance memory chips , 1991 .

[3]  M. Horowitz,et al.  An eight channel 35 GSample/s CMOS timing analyzer , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[4]  Tyler Thorp,et al.  Output prediction logic: a high-performance CMOS design technique , 2000, Proceedings 2000 International Conference on Computer Design.

[5]  William J. Dally,et al.  Digital systems engineering , 1998 .

[6]  R. Krishnamurthy,et al.  A 6.5 GHz 130 nm single-ended dynamic ALU and instruction-scheduler loop , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[7]  Carl Sechen,et al.  Clock-delayed domino for adder and combinational logic design , 1996, Proceedings International Conference on Computer Design. VLSI in Computers and Processors.

[8]  R. Stewart High density CMOS ROM arrays , 1977, 1977 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[9]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .

[10]  M. Horowitz,et al.  Precise delay generation using coupled oscillators , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[11]  Jaeha Kim,et al.  Adaptive supply serial links with sub-1 V operation and per-pin clock recovery , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[12]  David Harris,et al.  Skew-Tolerant Circuit Design , 2000 .

[13]  Mark Horowitz,et al.  A zero-overhead self-timed 160-ns 54-b CMOS divider , 1991 .

[14]  M. Usami,et al.  A 1.8 ns access, 550 MHz 4.5 Mb CMOS SRAM , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[15]  William J. Bowhill,et al.  Design of High-Performance Microprocessor Circuits , 2001 .

[16]  B. Murphy,et al.  A CMOS 32b single chip microprocessor , 1981, 1981 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[17]  Y. T. Yen Transient Analysis of Four-Phase MOS Switching Circuits , 1968 .

[18]  Jinn-Shyan Wang,et al.  Analysis and design of high-speed and low-power CMOS PLAs , 2001 .

[19]  David D. Ling,et al.  Power Supply Noise Analysis Methodology For Deep-submicron Vlsi Chip Design , 1997, Proceedings of the 34th Design Automation Conference.

[20]  Mark Horowitz,et al.  Timing analysis including clock skew , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Bharadwaj Amrutur,et al.  Fast low-power decoders for RAMs , 2001, IEEE J. Solid State Circuits.

[22]  S. Naffziger,et al.  Statistical clock skew modeling with data delay variations , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[23]  Sudhakar Bobba,et al.  IC power distribution challenges , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[24]  Vladimir Stojanovic,et al.  Comparative analysis of master-slave latches and flip-flops for high-performance and low-power systems , 1999, IEEE J. Solid State Circuits.

[25]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[26]  Stefanos Sidiropoulos,et al.  A semidigital dual delay-locked loop , 1997 .

[27]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[28]  S.H. Dhong,et al.  470 ps 64-bit parallel binary adder [for CPU chip] , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[29]  I. Sutherland,et al.  Logical Effort: Designing Fast CMOS Circuits , 1999 .