On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics

We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only applied at the root node in a nested sequent. Our shallow calculi are extensions of Kashima's calculus for tense logic and share an essential characteristic with display calculi, namely, the presence of structural rules called "display postulates". Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable for proof search due to the presence of display postulates and other structural rules. The second style of calculi uses deep-inference, whereby inference rules can be applied at any node in a nested sequent. We show that, for a range of extensions of tense logic, the two styles of calculi are equivalent, and there is a natural proof theoretic correspondence between display postulates and deep inference. The deep inference calculi enjoy the subformula property and have no display postulates or other structural rules, making them a better framework for proof search.

[1]  Rajeev Goré,et al.  Taming Displayed Tense Logics Using Nested Sequents with Deep Inference , 2009, TABLEAUX.

[2]  Luis Fariñas del Cerro,et al.  Modal Tableaux with Propagation Rules and Structural Rules , 1997, Fundam. Informaticae.

[3]  Typeset in Palatino by TEX and LATEX 2ε.Except where otherwise indicated, this thesis is my own original work. , 2002 .

[4]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[5]  II. Mathematisches Power and Weakness of the Modal Display Calculus , 1996 .

[6]  Martin A. Giese,et al.  Automated Reasoning with Analytic Tableaux and Related Methods, 18th International Conference, TABLEAUX 2009, Oslo, Norway, July 6-10, 2009. Proceedings , 2009, TABLEAUX.

[7]  Nuel Belnap,et al.  Display logic , 1982, J. Philos. Log..

[8]  Nuel Belnap,et al.  Gupta's rule of revision theory of truth , 1982, J. Philos. Log..

[9]  Alwen Tiu,et al.  A Local System for Classical Logic , 2001, LPAR.

[10]  Sara Negri,et al.  Proof Analysis in Modal Logic , 2005, J. Philos. Log..

[11]  Peter Aczel,et al.  An Introduction to Inductive Definitions , 1977 .

[12]  Rajeev Goré,et al.  Classical Modal Display Logic in the Calculus of Structures and Minimal Cut-free Deep Inference Calculi for S5 , 2007, J. Log. Comput..

[13]  Ryo Kashima,et al.  Cut-free sequent calculi for some tense logics , 1994, Stud Logica.

[14]  H. Wansing Displaying Modal Logic , 1998 .

[15]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[16]  Lutz Straßburger,et al.  Modular Sequent Systems for Modal Logic , 2009, TABLEAUX.

[17]  Raffaella Bernardi,et al.  Analyzing the Core of Categorial Grammar , 2004, J. Log. Lang. Inf..

[18]  H. Wansing Substructural logics , 1996 .

[19]  B. Nebel Introduction to Modal Logic Introduction , 2009 .

[20]  Roy Dyckhoff,et al.  POSITIVE LOGIC WITH ADJOINT MODALITIES: PROOF THEORY, SEMANTICS, AND REASONING ABOUT INFORMATION , 2009, The Review of Symbolic Logic.

[21]  Rajeev Goré,et al.  Substructural Logics on Display , 1998, Log. J. IGPL.

[22]  Heinrich Zimmermann,et al.  Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.

[23]  Kai Brünnler,et al.  Deep sequent systems for modal logic , 2009, Arch. Math. Log..

[24]  Francesca Poggiolesi On the Tree-Hypersequent Calculi , 2010 .

[25]  F. Lamarche On the Algebra of Structural Contexts , 2003 .

[26]  Lev Gordeev,et al.  Basic proof theory , 1998 .