A hybrid genetic algorithm with local optimiser improves calibration of a vegetation change cellular automata model

ABSTRACT Cellular automata (CA) models are commonly used to model vegetation dynamics, with the genetic algorithm (GA) being one method of calibration. This article investigates different GA settings, as well as the combination of a GA with a local optimiser to improve the calibration effort. The case study is a pattern-calibrated CA to model vegetation regrowth in central Victoria, Australia. We tested 16 GA models, varying population size, mutation rate, and level of allowable mutation. We also investigated the effect of applying a local optimiser, the Nelder‒Mead Downhill Simplex (NMDS) at GA convergence. We found that using a decreasing mutation rate can reduce computational cost while avoiding premature GA convergence, while increasing population size does not make the GA more efficient. The hybrid GA-NMDS can also reduce computational cost compared to a GA alone, while also improving the calibration metric. We conclude that careful consideration of GA settings, including population size and mutation rate, and in particular the addition of a local optimiser, can positively impact the efficiency and success of the GA algorithm, which can in turn lead to improved simulations using a well-calibrated CA model.

[1]  Paola Annoni,et al.  Sixth International Conference on Sensitivity Analysis of Model Output How to avoid a perfunctory sensitivity analysis , 2010 .

[2]  Patrick Siarry,et al.  Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions , 2003, Eur. J. Oper. Res..

[3]  M. R. Mickey,et al.  Estimation of Error Rates in Discriminant Analysis , 1968 .

[4]  Robert M. Itami,et al.  Simulating spatial dynamics: cellular automata theory , 1994 .

[5]  Jie Shan,et al.  Cellular automata urban growth model calibration with genetic algorithms , 2007, 2007 Urban Remote Sensing Joint Event.

[6]  Suzana Dragicevic,et al.  Integration of multicriteria evaluation and cellular automata methods for landslide simulation modelling , 2013 .

[7]  R. White,et al.  High-resolution integrated modelling of the spatial dynamics of urban and regional systems , 2000 .

[8]  Abdolrassoul Salmanmahiny,et al.  Subjectivity versus Objectivity: Comparative Study between Brute Force Method and Genetic Algorithm for Calibrating the SLEUTH Urban Growth Model , 2016 .

[9]  Peter A. Vesk,et al.  Getting trees on farms the easy way? Lessons from a model of eucalypt regeneration on pastures , 2006 .

[10]  Anthony Gar-On Yeh,et al.  Integration of genetic algorithms and GIS for optimal location search , 2005, Int. J. Geogr. Inf. Sci..

[11]  Hossein Aghababaee,et al.  Modeling dynamic urban growth using hybrid cellular automata and particle swarm optimization , 2012 .

[12]  R. Durrett Coexistence in stochastic spatial models , 2009, 0906.2293.

[13]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[14]  Lu Shoufeng,et al.  Based on Hybrid Genetic Algorithm and Cellular Automata Combined Traffic Signal Control and Route Guidance , 2006, 2007 Chinese Control Conference.

[15]  R. Hobbs,et al.  Why Old Fields? Socioeconomic and Ecological Causes and Consequences of Land Abandonment , 2007 .

[16]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[17]  Peter Carey,et al.  DISPERSE: A Cellular Automaton for Predicting the Distribution of Species in a Changed Climate , 1996 .

[18]  Danielle J. Marceau,et al.  An Interactive Method to Dynamically Create Transition Rules in a Land-use Cellular Automata Model , 2011 .

[19]  Y. Matsinos,et al.  Modeling competition, dispersal and effects of disturbance in the dynamics of a grassland community using a cellular automaton model , 2002 .

[20]  Yan Liu,et al.  Modeling dynamic urban growth using cellular automata and particle swarm optimization rules , 2011 .

[21]  M. Vitale,et al.  Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach , 2011 .

[22]  E. Vega,et al.  Effects of overgrazing and rainfall variability on the dynamics of semiarid banded vegetation patterns: A simulation study with cellular automata , 2011 .

[23]  Min Cao,et al.  A new discovery of transition rules for cellular automata by using cuckoo search algorithm , 2015, Int. J. Geogr. Inf. Sci..

[24]  A. Saltelli,et al.  The role of sensitivity analysis in ecological modelling , 2007 .

[25]  Suzana Dragicevic,et al.  Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour , 2008 .

[26]  Monica G. Turner,et al.  Quantitative methods in landscape ecology : the analysis and interpretation of landscape heterogeneity , 1991 .

[27]  Christine M. Anderson-Cook Practical Genetic Algorithms (2nd ed.) , 2005 .

[28]  H. Balzter,et al.  Cellular automata models for vegetation dynamics , 1998 .

[29]  John Yen,et al.  A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[30]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[31]  M. Araújo,et al.  Five (or so) challenges for species distribution modelling , 2006 .

[32]  D. Marceau,et al.  Simulating the impact of forest management scenarios in an agricultural landscape of southern Quebec, Canada, using a geographic cellular automata , 2007 .

[33]  G. D. Jenerette,et al.  © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Research Article Analysis and simulation of land-use change in the central Arizona – , 2022 .

[34]  R. Solé,et al.  The DivGame Simulator: a stochastic cellular automata model of rainforest dynamics , 2000 .

[35]  Lei Ding,et al.  Calibration of cellular automata model with adaptive genetic algorithm for the simulation of urban land-use , 2010, 2010 18th International Conference on Geoinformatics.

[36]  Bruce T. Milne,et al.  Lessons from applying fractal models to landscape patterns , 1991 .

[37]  Suzana Dragicevic,et al.  Assessing cellular automata model behaviour using a sensitivity analysis approach , 2006, Comput. Environ. Urban Syst..

[38]  Xiaoping Liu,et al.  Calibrating cellular automata based on landscape metrics by using genetic algorithms , 2013, Int. J. Geogr. Inf. Sci..

[39]  Yongjiu Feng,et al.  Spatially-Explicit Simulation of Urban Growth through Self-Adaptive Genetic Algorithm and Cellular Automata Modelling , 2014 .

[40]  Lisa T. Smallbone,et al.  Understanding Bird Responses in Regenerating Agricultural Landscapes , 2014 .

[41]  Inés Santé-Riveira,et al.  Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm. Application to a small urban settlement of NW Spain , 2013, Int. J. Geogr. Inf. Sci..

[42]  Hauke Reuter,et al.  Modelling Complex Ecological Dynamics , 2011 .

[43]  T. Czárán,et al.  Spatiotemporal dynamic models of plant populations and communities. , 1992, Trends in ecology & evolution.

[44]  J. Nicolau,et al.  Abandonment of agricultural land: an overview of drivers and consequences , 2007 .

[45]  George E. P. Box,et al.  Some Problems of Statistics and Everyday Life , 1979 .

[46]  Rui Zhu,et al.  An intelligent method to discover transition rules for cellular automata using bee colony optimisation , 2013, Int. J. Geogr. Inf. Sci..

[47]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[48]  H. Caswell,et al.  Cellular automaton models for competition in patchy environments: Facilitation, inhibition, and tolerance , 1999, Bulletin of mathematical biology.

[49]  R. Florence Ecology and Silviculture of Eucalypt Forests , 2004 .

[50]  Fabrice Gamboa,et al.  Local Polynomial Estimation for Sensitivity Analysis on Models With Correlated Inputs , 2008, Technometrics.

[51]  Albert Corominas,et al.  Technical Note: Relating to the Parameter Values Given by Nelder and Mead in their Algorithm , 2015, Comput. J..

[52]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[53]  Chang Wook Ahn,et al.  On the practical genetic algorithms , 2005, GECCO '05.

[54]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[55]  D. Lindenmayer,et al.  Scattered trees are keystone structures – Implications for conservation , 2006 .

[56]  Suzana Dragicevic,et al.  Modeling the Dynamics of Complex Spatial Systems Using GIS, Cellular Automata and Fuzzy Sets Applied to Invasive Plant Species Propagation , 2010 .

[57]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[58]  Broder Breckling,et al.  Cellular Automata in Ecological Modelling , 2011 .

[59]  Lisa T. Smallbone,et al.  Old field colonization by native trees and shrubs following land use change: Could this be Victoria’s largest example of landscape recovery? , 2011 .

[60]  I. Rodríguez‐Iturbe,et al.  Tree‐grass competition in space and time: Insights from a simple cellular automata model based on ecohydrological dynamics , 2002 .

[61]  Michel Barbeau,et al.  Strategies for Service Discovery over Ad Hoc Networks , 2006, Eng. Lett..

[62]  P. Graniero The influence of landscape heterogeneity and local habitat effects on the response to competitive pressures in metapopulations , 2007 .

[63]  Lixing Han,et al.  Implementing the Nelder-Mead simplex algorithm with adaptive parameters , 2010, Computational Optimization and Applications.

[64]  B. Soares-Filho,et al.  dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier , 2002 .

[65]  Lisa T. Smallbone,et al.  Uncertainty in a cellular automata model for vegetation change , 2014 .