Shaping time-domain responses with discrete controllers

A model-based design and tuning method for discrete controllers for single-input−single-output systems is presented in this article. It stresses the possibility of specifying the desired closed-loop behavior by using a set of time-domain conditions defining the performance that is desirable in the controlled output. The problem formulation is developed in the time domain since this is the domain where many important and different design conditions can be visualized and written in an easy mathematical form, particularly for most continuous chemical processes. This approach allows shaping the time-domain closed-loop response by one or more constraints representing the limits of minimum performance desired when specific changes on either the setpoint or the load disturbance are expected. Model uncertainties caused by slow time-variant or nonlinear systems can also be accounted for, guaranteeing robust performance and stability of the closed-loop system.

[1]  Mathukumalli Vidyasagar,et al.  Control system design via infinite linear programming , 1992 .

[2]  K. P. Dabke A simple criterion for stability of linear discrete systems , 1983 .

[3]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[4]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[5]  T. Harris,et al.  "Internal model control. 4. PID controller design." Comments , 1987 .

[6]  C. L. Smith,et al.  Digital computer process control , 1972 .

[7]  Ruey-Wen Liu Convergent systems , 1968 .

[8]  Rick H. Middleton,et al.  Trade-offs in linear control system design , 1991, Autom..

[9]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[10]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[11]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[12]  A. Abbas,et al.  A multiobjective design algorithm: application to the design of SISO control systems , 1995 .

[13]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[14]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[15]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[16]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[17]  Robin J. Evans,et al.  Optimal pole placement design for SISO discrete-time systems , 1996, IEEE Trans. Autom. Control..

[18]  Rolf Isermann Digital Control Systems , 1981 .

[19]  S. L. Harris,et al.  Controller tuning using optimization to meet multiple closed‐loop criteria , 1985 .

[20]  Thomas Kailath,et al.  Linear Systems , 1980 .

[21]  J. Duane Morningred,et al.  An Adaptive Nonlinear Predictive Controller , 1990, 1990 American Control Conference.

[22]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .