Improving mesh quality and finite element solution accuracy by GETMe smoothing in solving the Poisson equation

Mesh quality plays an essential role in finite element applications, since it affects the efficiency of the simulation with respect to solution accuracy and computational effort. Therefore, mesh smoothing techniques are often applied for improving mesh quality while preserving mesh topology. One of these methods is the recently proposed geometric element transformation method (GETMe), which is based on regularizing element transformations. It will be shown numerically that this smoothing method is particularly suitable, from an applicational point of view, since it leads to a significant reduction of discretization errors within the first few smoothing steps requiring only little computational effort. Furthermore, due to reduced condition numbers of the stiffness matrices the performance of iterative solvers of the resulting finite element equations is improved. This is demonstrated for the Poisson equation with a number of meshes of different complexity and type as well as for piecewise linear and quadratic finite element basis functions. Results are compared to those obtained by two variants of Laplacian smoothing and a state of the art global optimization-based approach.

[1]  David Eppstein,et al.  Optimal point placement for mesh smoothing , 1997, SODA '97.

[2]  Martin Berzins,et al.  Mesh Quality: A Function of Geometry, Error Estimates or Both? , 1999, Engineering with Computers.

[3]  Bharat K. Soni,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[4]  Manolis Papadrakakis,et al.  Improved GETMe by adaptive mesh smoothing , 2013 .

[5]  R. E. Jones A Self-Organizing Mesh Generation Program , 1974 .

[6]  Timothy S Newman,et al.  An angle-based optimization approach for 2D finite element mesh smoothing , 2006 .

[7]  Li Zhong,et al.  A Modified Laplacian Smoothing Approach with Mesh Saliency , 2006 .

[8]  Dimitris Vartziotis,et al.  The geometric element transformation method for tetrahedral mesh smoothing , 2009 .

[9]  Dimitris Vartziotis,et al.  Characteristic parameter sets and limits of circulant Hermitian polygon transformations , 2010 .

[10]  Noboru Kikuchi,et al.  A method of grid optimization for finite element methods , 1983 .

[11]  S. Huggenberger,et al.  Iterative geometric triangle transformations , 2012 .

[12]  Patrick M. Knupp Next-Generation Sweep Tool: A Method for Generating All-Hex Meshes on Two-and-One-Half Dimensional Geometries , 1998, IMR.

[13]  Dimitris Vartziotis,et al.  Fast smoothing of mixed volume meshes based on the effective geometric element transformation method , 2012 .

[14]  M. Rivara NEW LONGEST-EDGE ALGORITHMS FOR THE REFINEMENT AND/OR IMPROVEMENT OF UNSTRUCTURED TRIANGULATIONS , 1997 .

[15]  Rafael Montenegro,et al.  Smoothing and local refinement techniques for improving tetrahedral mesh quality , 2005 .

[16]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[17]  Todd S. Munson,et al.  A comparison of two optimization methods for mesh quality improvement , 2005, Engineering with Computers.

[18]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[19]  Carl Ollivier-Gooch,et al.  A Cost/Benefit Analysis of Simplicial Mesh Improvement Techniques as Measured by Solution Efficiency , 2000, Int. J. Comput. Geom. Appl..

[20]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[21]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[22]  Patrick M. Knupp,et al.  Hexahedral Mesh Untangling & Algebraic Mesh Quality Metrics , 2000, IMR.

[23]  Dimitris Vartziotis,et al.  A dual element based geometric element transformation method for all-hexahedral mesh smoothing , 2011 .

[24]  Patrick M. Knupp,et al.  The Mesquite Mesh Quality Improvement Toolkit , 2003, IMR.

[25]  Chandrajit L. Bajaj,et al.  Surface Smoothing and Quality Improvement of Quadrilateral/Hexahedral Meshes with Geometric Flow , 2005, IMR.

[26]  J. Reddy,et al.  The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .

[27]  Matthew L. Staten,et al.  An Approach to Combined Laplacian and Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes , 1998, IMR.

[28]  Lori A. Freitag,et al.  On combining Laplacian and optimization-based mesh smoothing techniques , 1997 .

[29]  Dimitris Vartziotis,et al.  The geometric element transformation method for mixed mesh smoothing , 2009, Engineering with Computers.

[30]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[31]  L. Freitag,et al.  Local optimization-based simplicial mesh untangling and improvement. , 2000 .

[32]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[33]  Jonathan Richard Shewchuk,et al.  Aggressive Tetrahedral Mesh Improvement , 2007, IMR.

[34]  Anoop Chawla,et al.  DARSS: a hybrid mesh smoother for all hexahedral meshes , 2011, Engineering with Computers.

[35]  O. Zienkiewicz,et al.  A new approach to the development of automatic quadrilateral mesh generation , 1991 .

[36]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[37]  Dimitris Vartziotis,et al.  journal homepage: www.elsevier.com/locate/cma Mesh smoothing using the Geometric Element Transformation Method , 2022 .

[38]  S. H. Lo,et al.  Automatic merging of hexahedral meshes , 2012 .

[39]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .