ParamILS: an automatic algorithm configuration framework
暂无分享,去创建一个
[1] Hector J. Levesque,et al. A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.
[2] Gerald DeJong,et al. COMPOSER: A Probabilistic Solution to the Utility Problem in Speed-Up Learning , 1992, AAAI.
[3] Steven Minton,et al. Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..
[4] Andrew W. Moore,et al. Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation , 1993, NIPS.
[5] Steven Minton. An Analytic Learning System for Specializing Heuristics , 1993, IJCAI.
[6] Jonathan Gratch,et al. Adaptive Problem-solving for Large-scale Scheduling Problems: A Case Study , 1996, J. Artif. Intell. Res..
[7] Bart Selman,et al. Problem Structure in the Presence of Perturbations , 1997, AAAI/IAAI.
[8] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[9] R. Dechter,et al. Stochastic Local Search for Bayesian Networks , 1999 .
[10] David S. Johnson,et al. A theoretician's guide to the experimental analysis of algorithms , 1999, Data Structures, Near Neighbor Searches, and Methodology.
[11] Rina Dechter,et al. Stochastic local search for Bayesian network , 1999, AISTATS.
[12] H. Terashima-Marín,et al. Evolution of Constraint Satisfaction strategies in examination timetabling , 1999 .
[13] Toby Walsh,et al. Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.
[14] Yoav Shoham,et al. Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.
[15] George C. Runger,et al. Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.
[16] M. Dorigo,et al. Design of Iterated Local Search Algorithms An Example Application to the Single Machine Total Weighted Tardiness Problem , 2001 .
[17] Matthijs den Besten,et al. Design of Iterated Local Search Algorithms , 2001, EvoWorkshops.
[18] David Maxwell Chickering,et al. A Bayesian Approach to Tackling Hard Computational Problems (Preliminary Report) , 2001, Electron. Notes Discret. Math..
[19] Helena Ramalhinho Dias Lourenço,et al. Iterated Local Search , 2001, Handbook of Metaheuristics.
[20] Henry A. Kautz,et al. Auto-Walksat: A Self-Tuning Implementation of Walksat , 2001, Electron. Notes Discret. Math..
[21] Holger H. Hoos,et al. Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.
[22] Yoav Shoham,et al. Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.
[23] Thomas Stützle,et al. A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.
[24] Eric Horvitz,et al. Dynamic restart policies , 2002, AAAI/IAAI.
[25] Holger H. Hoos,et al. A mixture-model for the behaviour of SLS algorithms for SAT , 2002, AAAI/IAAI.
[26] James C. Spall,et al. Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.
[27] Yixin Diao,et al. Generic Online Optimization of Multiple Configuration Parameters with Application to a Database Server , 2003, DSOM.
[28] Alper Atamtürk,et al. On the facets of the mixed–integer knapsack polyhedron , 2003, Math. Program..
[29] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[30] Steven Minton,et al. Automatically configuring constraint satisfaction programs: A case study , 1996, Constraints.
[31] Holger H. Hoos,et al. UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT & MAX-SAT , 2004, SAT.
[32] Mauro Birattari,et al. The problem of tuning metaheuristics: as seen from the machine learning perspective , 2004 .
[33] Charles Audet,et al. Finding Optimal Algorithmic Parameters Using the Mesh Adaptive Direct Search Algorithm , 2004 .
[34] Laurent Simon,et al. Fifty-Five Solvers in Vancouver: The SAT 2004 Competition , 2004, SAT (Selected Papers.
[35] Thomas Stützle,et al. Stochastic Local Search: Foundations & Applications , 2004 .
[36] Alper Atamtürk,et al. A study of the lot-sizing polytope , 2004, Math. Program..
[37] Emmanuel Zarpas,et al. Benchmarking SAT Solvers for Bounded Model Checking , 2005, SAT.
[38] Thomas Stützle,et al. Efficient Stochastic Local Search for MPE Solving , 2005, IJCAI.
[39] Eugene C. Freuder,et al. Using CBR to Select Solution Strategies in Constraint Programming , 2005, ICCBR.
[40] Mihai Oltean,et al. Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.
[41] J. Christopher Beck,et al. APPLYING MACHINE LEARNING TO LOW‐KNOWLEDGE CONTROL OF OPTIMIZATION ALGORITHMS , 2005, Comput. Intell..
[42] Michael F. P. O'Boyle,et al. Method-specific dynamic compilation using logistic regression , 2006, OOPSLA '06.
[43] Thomas Bartz-Beielstein,et al. Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.
[44] D. Kudenko,et al. Sequential Experiment Designs for Screening and Tuning Parameters of Stochastic Heuristics , 2006 .
[45] Kevin Leyton-Brown,et al. Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.
[46] Michael F. P. O'Boyle,et al. Using machine learning to focus iterative optimization , 2006, International Symposium on Code Generation and Optimization (CGO'06).
[47] CHARLES AUDET,et al. Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization , 2006, SIAM J. Optim..
[48] Manuel Laguna,et al. Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..
[49] Jürgen Schmidhuber,et al. Dynamic Algorithm Portfolios , 2006, AI&M.
[50] Holger H. Hoos,et al. A replica exchange Monte Carlo algorithm for protein folding in the HP model , 2007, BMC Bioinformatics.
[51] Jürgen Schmidhuber,et al. Learning Restart Strategies , 2007, IJCAI.
[52] Alan J. Hu,et al. Structural Abstraction of Software Verification Conditions , 2007, CAV.
[53] Thomas Stützle,et al. Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement , 2007, Hybrid Metaheuristics.
[54] Kevin P. Murphy,et al. Efficient parameter estimation for RNA secondary structure prediction , 2007, ISMB/ECCB.
[55] Alan J. Hu,et al. Boosting Verification by Automatic Tuning of Decision Procedures , 2007, Formal Methods in Computer Aided Design (FMCAD'07).
[56] Thomas Stützle,et al. Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.
[57] Ole J. Mengshoel,et al. Understanding the role of noise in stochastic local search: Analysis and experiments , 2008, Artif. Intell..
[58] Kevin Leyton-Brown,et al. SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..
[59] H. Hoos. Computer-Aided Design of High-Performance Algorithms , 2008 .
[60] Mauro Brunato,et al. Reactive Search and Intelligent Optimization , 2008 .
[61] Frank Hutter,et al. Automated configuration of algorithms for solving hard computational problems , 2009 .
[62] Holger H. Hoos,et al. An automatically configured modular algorithm for post enrollment course timetabling , 2009 .
[63] Kevin Leyton-Brown,et al. SATenstein: Automatically Building Local Search SAT Solvers from Components , 2009, IJCAI.
[64] Sinan Gürel,et al. A strong conic quadratic reformulation for machine-job assignment with controllable processing times , 2009, Oper. Res. Lett..
[65] Kevin P. Murphy,et al. An experimental investigation of model-based parameter optimisation: SPO and beyond , 2009, GECCO.
[66] Kevin Leyton-Brown,et al. Tradeoffs in the empirical evaluation of competing algorithm designs , 2010, Annals of Mathematics and Artificial Intelligence.
[67] Sonja Kuhnt,et al. Design and analysis of computer experiments , 2010 .
[68] Athanasios K. Tsakalidis,et al. Data Structures , 2011 .