Bayesian Image Understanding: From Images to Virtual Forests

[1]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[2]  W. Clem Karl,et al.  Multiscale representations of Markov random fields , 1993, IEEE Trans. Signal Process..

[3]  K. O. Niemann,et al.  Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery , 2000 .

[4]  Ronald J. Jaszczak,et al.  Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data , 1997, IEEE Transactions on Medical Imaging.

[5]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[6]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[7]  Ken D. Sauer,et al.  ML parameter estimation for Markov random fields with applications to Bayesian tomography , 1998, IEEE Trans. Image Process..

[8]  Yoram Singer,et al.  The Hierarchical Hidden Markov Model: Analysis and Applications , 1998, Machine Learning.

[9]  Basilis Gidas,et al.  A Renormalization Group Approach to Image Processing Problems , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Michael Unser,et al.  Multiresolution Feature Extraction and Selection for Texture Segmentation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .