Exact solutions to linear systems of equations using output sensitive lifting
暂无分享,去创建一个
[1] Antoine Petitet,et al. Minimizing development and maintenance costs in supporting persistently optimized BLAS , 2005 .
[2] Erich Kaltofen,et al. LINBOX: A GENERIC LIBRARY FOR EXACT LINEAR ALGEBRA , 2002 .
[3] Carsten Schneider,et al. A refined difference field theory for symbolic summation , 2008, J. Symb. Comput..
[4] Victor Y. Pan,et al. Acceleration of Euclidean Algorithm and Rational Number Reconstruction , 2003, SIAM J. Comput..
[5] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[6] Carsten Schneider,et al. Computer proofs of a new family of harmonic number identities , 2003, Adv. Appl. Math..
[7] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[8] Carsten Schneider,et al. A Collection of Denominator Bounds To Solve Parameterized Linear Difference Equations in ΠΣ-Fields∗ , 2004 .
[9] Michael Karr,et al. Summation in Finite Terms , 1981, JACM.
[10] John Abbott,et al. How Tight is Hadamard's Bound? , 2001, Exp. Math..
[11] Paul S. Wang,et al. A p-adic algorithm for univariate partial fractions , 1981, SYMSAC '81.
[12] Carsten Schneider,et al. Degree Bounds to Find Polynomial Solutions of Parameterized Linear Difference Equations in ΠΣ-Fields , 2005, Applicable Algebra in Engineering, Communication and Computing.
[13] Manuel Bronstein. On Solutions of Linear Ordinary Difference Equations in their Coefficient Field , 2000, J. Symb. Comput..
[14] Manuel Kauers,et al. Application of unspecified sequences in symbolic summation , 2006, ISSAC '06.
[15] Arne Storjohann,et al. The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..
[16] Daniel Lichtblau,et al. Half-GCD and fast rational recovery , 2005, ISSAC.
[17] D. H. Lehmer. Euclid's Algorithm for Large Numbers , 1938 .
[18] J. Dixon. Exact solution of linear equations usingP-adic expansions , 1982 .
[19] Erich Kaltofen. An output-sensitive variant of the baby steps/giant steps determinant algorithm , 2002, ISSAC '02.
[20] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[21] Gilles Villard,et al. Solving sparse rational linear systems , 2006, ISSAC '06.
[22] Silvio Ursic,et al. Exact Solution of Systems of Linear Equations with Iterative Methods , 1983 .
[23] Curtis Bright,et al. Vector rational number reconstruction , 2011, ISSAC '11.
[24] Arne Storjohann,et al. Diophantine linear system solving , 1999, ISSAC '99.
[25] Arne Storjohann,et al. A BLAS based C library for exact linear algebra on integer matrices , 2005, ISSAC.
[26] Arnold Schönhage,et al. Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.
[27] William J. Cook,et al. Solving Very Sparse Rational Systems of Equations , 2011, TOMS.
[28] E. V. Krishnamurthy,et al. p-Adic arithmetic procedures for exact matrix computations , 1975 .
[29] Liang Chen,et al. Algorithms for solving linear systems over cyclotomic fields , 2010, J. Symb. Comput..
[30] Arne Storjohann,et al. Certified dense linear system solving , 2004, J. Symb. Comput..
[31] Victor Y. Pan,et al. On Rational Number Reconstruction and Approximation , 2004, SIAM J. Comput..
[32] Numerische Mathematik. Exact Solution of Linear Equations Using P-Adie Expansions* , 2005 .
[33] S. Cabay. Exact solution of linear equations , 1971, SYMSAC '71.
[34] Carsten Schneider,et al. The Summation Package Sigma: Underlying Principles and a Rhombus Tiling Application , 2004, Discret. Math. Theor. Comput. Sci..
[35] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.
[36] Ioannis Z. Emiris,et al. A Complete Implementation for Computing General Dimensional Convex Hulls , 1998, Int. J. Comput. Geom. Appl..
[37] Kenneth H. Rosen. Elementary Number Theory , 2004 .
[38] Zhendong Wan,et al. An algorithm to solve integer linear systems exactly using numerical methods , 2006, J. Symb. Comput..
[39] Matemática,et al. Society for Industrial and Applied Mathematics , 2010 .
[40] Erich Kaltofen,et al. On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.
[41] Carsten Schneider,et al. Solving parameterized linear difference equations in terms of indefinite nested sums and products , 2005 .
[42] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[43] Jean-Guillaume Dumas,et al. Dense Linear Algebra over Word-Size Prime Fields: the FFLAS and FFPACK Packages , 2006, TOMS.
[44] Robert T. Moenck,et al. Approximate algorithms to derive exact solutions to systems of linear equations , 1979, EUROSAM.
[45] Manuel Kauers,et al. Symbolic summation with radical expressions , 2007, ISSAC '07.
[46] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[47] Michael Karr. Theory of Summation in Finite Terms , 1985, J. Symb. Comput..