Advances in Design and Specification Languages for Embedded Systems

Preface: S.A. Huss. Part I. Analog Mixed-Signal, Introduction: C.Grimm. 1.Compact Modeling of Emerging Technologies with VHDL-AMS: F. Krummenacher et al. 2.Baseband Modeling Using Multidimensional Networks in VHDL-AMS: J.Haase. 3.Verification-Oriented Behavioral Modeling of Non-Linear Analog Parts of Mixed-Signal Circuits: E. Kock et al. 4.Improving Efficiency and Robustness of Analog Behavioral Models: E.Barke et al. 5.ModelLib: A Web-Based Platform for Collecting Behavioural Models and Supporting the Design of AMS Systems: T.Mahne and A.Vachoux. Part II. C / C++ Based System Design. Introduction: F.Oppenheimer. 6.The Quiny SystemC Front End: Self-Synthesising Designs: T.Schubert and W.Nebel. 7.Mining Metadata from SystemC IP Library: D.A.Mathaikutty and S.Shukla. 8.Non-Intrusive High-level SystemC Debugging: T.Berndt et al. 9.Transaction Level Modeling in Communication Engine Design: T.Makelainen et al. 10.Object-Oriented Transaction Level Modelling: M.Radetzki. Part III. Property Driven Design, Introduction: D.Borrione. 11.A Efficient Synthesis Method for Property-Based Design in Formal Verification: H.Eveking et al. 12.On-line monitoring of properties built on regular expressions sequences: K.Morin-Allory and D.Borrione. 13.Observer-Based Verification Using Introspection: E. M. Aboulhamid et al. 14.Formalizing TLM with Communicating State Machines: B. Niemann et al. 15.Different Kinds of System Descriptions as Synchronous Programs: J.Brandt and K.Schneider. Part IV. UML-Based System Specification and Design, Introduction: P.van der Putten. 16.A Model-driven co-design flow for Embedded Systems: S.Bocchio et al. 17. A Method for Mobile Terminal Platform Architecture Development: T.Eriksson. 18. UML2 Profile for Modeling Controlled Data Parallel Applications: E.Rutten. 19.MCF: A Metamodeling based Visual Component Composition Framework: D.A. Mathaikutty and S.Shukla.20.Reusing Systems Design Experience Through Modelling Patterns: H.Corporaal et al.

[1]  Clare Dixon,et al.  Clausal temporal resolution , 1999, TOCL.

[2]  C. Lallement,et al.  Design-oriented compact models for CNTFETs , 2006, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006..

[3]  Kaushik Roy,et al.  A circuit-compatible model of ballistic carbon nanotube field-effect transistors , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  K. Balasubramanian,et al.  Exclusive-OR gate with a single carbon nanotube , 2006 .

[5]  S. Datta,et al.  Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .

[6]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[7]  Jean-Baptiste Kammerer,et al.  Compact Modeling and Applications of CNTFETs for Analog and Digital Circuit Design , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[8]  Pallab Dasgupta,et al.  What lies between Design Intent Coverage and Model Checking? , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[9]  A.-S. Porret,et al.  A novel approach to charge-based non-quasi-static model of the MOS transistor valid in all modes of operation , 2000 .

[10]  Christophe Lallement,et al.  An explicit quasi-static charge-based compact model for symmetric DG MOSFET , 2006 .

[11]  J. G. Fossum,et al.  Analytical modeling of quantization and volume inversion in thin Si-film DG MOSFETs , 2002 .

[12]  Christian Enz,et al.  A Design Oriented Charge-based Current Model for Symmetric DG MOSFET and its Correlation with the EKV Formalism , 2005 .

[13]  Christophe Lallement,et al.  Explicit modelling of the double-gate MOSFET with VHDL-AMS , 2006 .

[14]  Y. Taur,et al.  A continuous, analytic drain-current model for DG MOSFETs , 2004 .

[15]  Zeljko Zilic,et al.  Incorporating efficient assertion checkers into hardware emulation , 2005, 2005 International Conference on Computer Design.

[16]  S. Wind,et al.  Carbon nanotube electronics , 2002, Digest. International Electron Devices Meeting,.

[17]  Mark S. Lundstrom,et al.  A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.

[18]  K. Roy,et al.  Carbon-nanotube-based voltage-mode multiple-valued logic design , 2005, IEEE Transactions on Nanotechnology.

[19]  François Pêcheux,et al.  VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[20]  Joachim Knoch,et al.  Comparison of transport properties in carbon nanotube field-effect transistors with Schottky contacts and doped source/drain contacts , 2005 .

[21]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[22]  G. O. Workman,et al.  A process/physics-based compact model for nonclassical CMOS device and circuit design , 2004 .

[23]  Yuan Taur An analytical solution to a double-gate MOSFET with undoped body , 2000, IEEE Electron Device Letters.