Environment Driven Underwater Camera-IMU Calibration for Monocular Visual-Inertial SLAM

Most state-of-the-art underwater vision systems are calibrated manually in shallow water and used in open seas without changing. However, the refractivity of the water is adaptively changed depending on the salinity, temperature, depth or other underwater environmental indexes, which inevitably generate the calibration errors and induces incorrectness e.g., for underwater Simultaneously Localization and Mapping (SLAM). To address this issue, in this paper, we propose a new underwater Camera-Inertial Measurement Unit (IMU) calibration model, which just needs to be calibrated once in the air, and then both the intrinsic parameters and extrinsic parameters between the camera and IMU could be automatically calculated depending on the environment indexes. To our best knowledge, this is the first work to consider the underwater Camera-IMU calibration via environmental indexes. We also build a verification platform to validate the effectiveness of our proposed method on real experiments, and use it for underwater monocular Visual-Inertial SLAM.

[1]  Jan-Michael Frahm,et al.  The Misty Three Point Algorithm for Relative Pose , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[3]  Yan Peng,et al.  Motion-based pose estimation via free falling , 2018, 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC).

[4]  Yandong Tang,et al.  V-disparity Based UGV Obstacle Detection in Rough Outdoor Terrain , 2010 .

[5]  Eduardo Mario Nebot,et al.  Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[7]  Jie Li,et al.  Pose-Graph SLAM Using Forward-Looking Sonar , 2018, IEEE Robotics and Automation Letters.

[8]  Davide Scaramuzza,et al.  A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Torsten Sattler,et al.  Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[11]  Shaojie Shen,et al.  Monocular Visual–Inertial State Estimation With Online Initialization and Camera–IMU Extrinsic Calibration , 2017, IEEE Transactions on Automation Science and Engineering.

[12]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[13]  Frank Kirchner,et al.  IMU-aided stereo visual odometry for ground-tracking AUV applications , 2010, OCEANS'10 IEEE SYDNEY.

[14]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Gabriel Oliver Codina,et al.  Visual odometry for autonomous underwater vehicles , 2013, 2013 MTS/IEEE OCEANS - Bergen.

[16]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[18]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[19]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[20]  Fabio Bellavia,et al.  Selective visual odometry for accurate AUV localization , 2017, Auton. Robots.

[21]  Andrew Hogue,et al.  Underwater environment reconstruction using stereo and inertial data , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[22]  Paul Ozog,et al.  Pose-Graph SLAM for Underwater Navigation , 2017 .

[23]  Roland Siegwart,et al.  Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[24]  Roland Siegwart,et al.  Robust visual inertial odometry using a direct EKF-based approach , 2015, IROS 2015.

[25]  Flavio Fontana,et al.  Autonomous, Vision‐based Flight and Live Dense 3D Mapping with a Quadrotor Micro Aerial Vehicle , 2016, J. Field Robotics.

[26]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[28]  Alberto Quattrini Li,et al.  Sonar Visual Inertial SLAM of Underwater Structures , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).