Relation between Third‐Order Elastic Constants of Single Crystals and Polycrystals

The approximations by Voigt, Reuss, and Hill for calculating the elastic constants of polycrystals from the elastic constants of single crystals are extended to the third‐order elastic constants. The general relations including the expressions for the third‐order elastic compliances are presented and given explicitly for cubic symmetry. They are used to calculate the polycrystalline third‐order elastic constants of eleven cubic materials. For cubic symmetry, relations for the pressure derivatives of the second‐order elastic constants in the approximations of Voigt, Reuss, and Hill are also presented, and the anisotropy of the third‐order elastic constants is discussed. It is found that for all materials considered, the anisotropy for the third‐order elastic constants is much larger than the anisotropy of the second‐order elastic constants, and that a weak correlation exists between the anisotropy of the third‐order elastic constants and of the second‐order elastic constants.

[1]  D. Chung,et al.  First Pressure Derivatives of Polycrystalline Elastic Moduli: Their Relation to Single‐Crystal Acoustic Data and Thermodynamic Relations , 1967 .

[2]  R. Chang RELATIONSHIPS BETWEEN THE NONLINEAR ELASTIC CONSTANTS OF MONOCRYSTALLINE AND POLYCRYSTALLINE SOLIDS OF CUBIC SYMMETRY , 1967 .

[3]  D. Chung,et al.  The Voigt‐Reuss‐Hill Approximation and Elastic Moduli of Polycrystalline MgO, CaF2, β‐ZnS, ZnSe, and CdTe , 1967 .

[4]  D. Chung,et al.  The Elastic Anisotropy of Crystals , 1967 .

[5]  R. T. Smith,et al.  Third-Order Elastic Moduli of Polycrystalline Metals from Ultrasonic Velocity Measurements , 1966 .

[6]  L. Walpole On bounds for the overall elastic moduli of inhomogeneous systems—I , 1966 .

[7]  R. N. Thurston Effective Elastic Coefficients for Wave Propagation in Crystals under Stress , 1965 .

[8]  K. Brugger,et al.  Thermodynamic Definition of Higher Order Elastic Coefficients , 1964 .

[9]  I. Tadjbakhsh,et al.  The elastic tensor of given symmetry nearest to an anisotropic elastic tensor , 1963 .

[10]  H. Bross Berechnung der elastischen Konstanten dritter Ordnung der Alkalihalogenidkristalle , 1963 .

[11]  T. Krishnamurty Fourth-order elastic coefficients in crystals , 1963 .

[12]  D. Chung Elastic moduli of single crystal and polycrystalline MgO , 1963 .

[13]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[14]  Daniels PRESSURE VARIATION OF THE ELASTIC CONSTANTS OF SODIUM. Technical Report No. 3 , 1960 .

[15]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[16]  R. Hearmon `Third‐order' elastic coefficients , 1953 .

[17]  G. Leibfried Versetzungen in anisotropem Material , 1953 .

[18]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[19]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[20]  G. Barsch Adiabatic, Isothermal, and Intermediate Pressure Derivatives of the Elastic Constants for Cubic Symmetry. I. Basic Formulae , 1967 .

[21]  R. Toupin,et al.  Dimensional Changes in Crystals Caused by Dislocations , 1960 .

[22]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .