The Approximation Method for Two-Stage Fuzzy Random Programming With Recourse

In this paper, a new class of fuzzy random optimization problem called two-stage fuzzy random programming or fuzzy random programming with recourse (FRPR) problem is first presented; then its deterministic equivalent programming problem is characterized. Because the FRPR problems include fuzzy random variable parameters with an infinite support, they are inherently infinite-dimensional optimization problems that can rarely be solved directly. Therefore, an approximation approach to the fuzzy random variables with infinite supports by finitely supported ones is proposed, which results in finite-dimensional FRPR problems. After that, this paper is devoted to establishing the conditions under which the objective value (optimal objective value, and minimizers) of such finite-dimensional FRPR problem can be shown to converge to the objective value (respectively, optimal objective value and minimizers) of the original infinite-dimensional FRPR problem.

[1]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[2]  R. Kruse,et al.  Statistics with vague data , 1987 .

[3]  Volker Krätschmer,et al.  A unified approach to fuzzy random variables , 2001, Fuzzy Sets Syst..

[4]  Baoding Liu,et al.  Theory and Practice of Uncertain Programming , 2003, Studies in Fuzziness and Soft Computing.

[5]  Etienne Kerre,et al.  Possibility theory: an integral theoretic approach , 1992 .

[6]  M. K. Luhandjula,et al.  Optimisation under hybrid uncertainty , 2004, Fuzzy Sets Syst..

[7]  Ronald R. Yager,et al.  Determining equivalent values for possibilistic variables , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Hidetomo Ichihashi,et al.  Modality constrained programming problems: A unified approach to fuzzy mathematical programming problems in the setting of possibility theory , 1993, Inf. Sci..

[9]  Baoding Liu,et al.  A survey of credibility theory , 2006, Fuzzy Optim. Decis. Mak..

[10]  Pei Wang,et al.  Fuzzy contactibility and fuzzy variables , 1982 .

[11]  Masahiro Inuiguchi,et al.  Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem , 2000, Fuzzy Sets Syst..

[12]  James G. Morris,et al.  Decision Problems Under Risk and Chance Constrained Programming: Dilemmas in the Transition , 1981 .

[13]  Yian-Kui Liu,et al.  Measurability criteria for fuzzy random vectors , 2006, Fuzzy Optim. Decis. Mak..

[14]  Baoding Liu,et al.  Fuzzy random dependent-chance programming , 2001, IEEE Trans. Fuzzy Syst..

[15]  M. K. Luhandjula Fuzzy optimization: an appraisal , 1989 .

[16]  Hans-Jürgen Zimmermann,et al.  Possibility distributions of fuzzy decision variables obtained from possibilistic linear programming problems , 2000, Fuzzy Sets Syst..

[17]  Jinwu Gao,et al.  Convergence Criteria and Convergence Relations for Sequences of Fuzzy Random Variables , 2005, FSKD.

[18]  R. Wets,et al.  STOCHASTIC PROGRAMS WITH RECOURSE , 1967 .

[19]  Baoding Liu,et al.  Toward Fuzzy Optimization without Mathematical Ambiguity , 2002, Fuzzy Optim. Decis. Mak..

[20]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[21]  Wang Guangyuan,et al.  Linear programming with fuzzy random variable coefficients , 1993 .

[22]  坂和 正敏 Fuzzy sets and interactive multiobjective optimization , 1993 .

[23]  Hsiao-Fan Wang,et al.  Linear programming with fuzzy coefficients in constraints , 1999 .

[24]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .

[25]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[26]  Yian-Kui Liu,et al.  A Bank Hedging Decision Problem , and formulated it as a stochastic possibilistic bank hedging decision model , 2004 .

[27]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[28]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[29]  Peter Kall,et al.  Stochastic Linear Programming , 1975 .

[30]  M. Sugeno,et al.  An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy , 1989 .

[31]  Baoding Liu,et al.  Uncertain Programming , 1999 .

[32]  Ana Colubi,et al.  Simulation of random fuzzy variables: an empirical approach to statistical/probabilistic studies with fuzzy experimental data , 2002, IEEE Trans. Fuzzy Syst..

[33]  M. K. Luhandjula Fuzziness and randomness in an optimization framework , 1996, Fuzzy Sets Syst..

[34]  Yian-Kui Liu,et al.  Fuzzy Random Variables: A Scalar Expected Value Operator , 2003, Fuzzy Optim. Decis. Mak..

[35]  M. Gil,et al.  Constructive definitions of fuzzy random variables , 1997 .

[36]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[37]  Baoding Liu,et al.  Inequalities and Convergence Concepts of Fuzzy and Rough Variables , 2003, Fuzzy Optim. Decis. Mak..

[38]  Yian-Kui Liu,et al.  A class of fuzzy random optimization: expected value models , 2003, Inf. Sci..

[39]  George J. Klir,et al.  On fuzzy-set interpretation of possibility theory , 1999, Fuzzy Sets Syst..

[40]  Y.-K. Liu,et al.  Convergent results about the use of fuzzy simulation in fuzzy optimization problems , 2006, IEEE Transactions on Fuzzy Systems.