Enthalpies of formation from B3LYP calculations

We have calculated the geometries, energies, and normal vibrations of 845 compounds containing the elements H, C, N, O, F, Al, Si, P, S, and Cl using hybrid density functional theory in order to investigate the accuracy of atom‐additive schemes for predicting enthalpies of formation at 298 K. The results give a more realistic estimate of the accuracy of density functional calculations than some overoptimistic earlier correlations. We have also calculated atom‐additive schemes for the zero‐point energies and enthalpic corrections to the energies. Remarkably, it is not important to include the vibrational or rotational contributions, which can be estimated well within a purely Born‐Oppenheimer regression model. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 725–733, 2004

[1]  Donald G. Truhlar,et al.  Robust and Affordable Multicoefficient Methods for Thermochemistry and Thermochemical Kinetics: The MCCM/3 Suite and SAC/3 , 2003 .

[2]  J. Cioslowski,et al.  Transferability of energies of atoms in organic molecules , 2003 .

[3]  A. Ruzsinszky,et al.  Rapid estimation of zero-point energies of molecules using Hartree-Fock atomic partial charges , 2003 .

[4]  A. Ruzsinszky,et al.  Implicit zero-point vibration energy and thermal corrections in rapid estimation of enthalpies of formation from Hartree-Fock total energy and partial charges , 2003 .

[5]  A. Ruzsinszky,et al.  Optimal Selection of Partial Charge Calculation Method for Rapid Estimation of Enthalpies of Formation from Hartree-Fock Total Energy , 2002 .

[6]  L. Curtiss,et al.  Gaussian-3 and related methods for accurate thermochemistry , 2002 .

[7]  L. Curtiss,et al.  Assessment of parametrized core correlation schemes in Gaussian-3 theory , 2002 .

[8]  C. Wilcox,et al.  An improved protocol for the efficient ab initio calculation of accurate enthalpies of formation for C,H,N compounds , 2001 .

[9]  A. Ruzsinszky,et al.  The performance of the rapid estimation of basis set error and correlation energy from partial charges method on new molecules of the G3/99 test set , 2001 .

[10]  A. Ruzsinszky,et al.  Accurate thermochemistry from corrected Hartree–Fock results: rapid estimation of nearly experimental quality total energy using the small 6-31G(d) basis set , 2001 .

[11]  J. Peter Guthrie,et al.  Heats of Formation from DFT Calculations: An Examination of Several Parameterizations , 2001 .

[12]  D. Truhlar,et al.  Multi-coefficient Correlation Method: Comparison of Specific-Range Reaction Parameters to General Parameters for CnHxOy Compounds , 2001 .

[13]  A. Ruzsinszky,et al.  Reproducing Gaussian-3 Total Energy Using Fitted Atomic Correlation Parameters for the Rapid Estimation of Correlation Energy from Partial Charges Method and Hartree-Fock Results , 2001 .

[14]  J. Cioslowski,et al.  A set of standard enthalpies of formation for benchmarking, calibration, and parametrization of electronic structure methods , 2000 .

[15]  Krishnan Raghavachari,et al.  Assessment of Gaussian-3 and Density Functional Theories for Enthalpies of Formation of C1−C16 Alkanes† , 2000 .

[16]  L. Curtiss,et al.  Assessment of Gaussian-3 and density functional theories for a larger experimental test set , 2000 .

[17]  L. Curtiss,et al.  Gaussian-3 theory using scaled energies , 2000 .

[18]  Krishnan Raghavachari,et al.  Gaussian-3 theory using coupled cluster energies , 1999 .

[19]  L. Curtiss,et al.  Gaussian-3 theory: a variation based on third-order perturbation theory and an assessment of the contribution of core-related correlation , 1999 .

[20]  Krishnan Raghavachari,et al.  GAUSSIAN-3 THEORY USING DENSITY FUNCTIONAL GEOMETRIES AND ZERO-POINT ENERGIES , 1999 .

[21]  Donald G. Truhlar,et al.  Optimized Parameters for Scaling Correlation Energy , 1999 .

[22]  Krishnan Raghavachari,et al.  Gaussian-3 theory using reduced Mo/ller-Plesset order , 1999 .

[23]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[24]  John A. Montgomery,et al.  Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry , 1998 .

[25]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[26]  Jerzy Cioslowski,et al.  Computationally Inexpensive Theoretical Thermochemistry , 1998 .

[27]  Krishnan Raghavachari,et al.  Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities , 1998 .

[28]  Leo Radom,et al.  An assessment of theoretical procedures for the calculation of reliable free radical thermochemistry: A recommended new procedure , 1998 .

[29]  Krishnan Raghavachari,et al.  Accurate thermochemistry for larger molecules : gaussian-2 theory with bond separation energies. , 1997 .

[30]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[31]  J. Ochterski,et al.  Comparison of different ab initio theoretical models for calculating isodesmic reaction energies for small ring and related compounds , 1997, J. Comput. Chem..

[32]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[33]  Walter Thiel,et al.  Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group , 1996 .

[34]  G. A. Petersson,et al.  A Comparison of Model Chemistries , 1995 .

[35]  P. Politzer,et al.  Use of molecular stoichiometry to estimate vibrational energy , 1995 .

[36]  L. Curtiss,et al.  Gaussian‐2 theory: Use of higher level correlation methods, quadratic configuration interaction geometries, and second‐order Mo/ller–Plesset zero‐point energies , 1995 .

[37]  D. Truhlar,et al.  Improved general scaling factors and systematic tests of the SAC method for estimating correlation energies of molecules , 1995 .

[38]  Walter Thiel,et al.  Extension of MNDO to d orbitals: parameters and results for silicon , 1994 .

[39]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[40]  Krishnan Raghavachari,et al.  Gaussian-2 theory using reduced Moller--Plesset orders , 1993 .

[41]  Walter Thiel,et al.  Extension of MNDO to d Orbitals: Parameters and Results for the Halogens , 1992 .

[42]  W. Thiel,et al.  Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results , 1992 .

[43]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[44]  G. A. Petersson,et al.  A complete basis set model chemistry. III. The complete basis set‐quadratic configuration interaction family of methods , 1991 .

[45]  G. A. Petersson,et al.  A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms , 1991 .

[46]  Michael J. S. Dewar,et al.  AM1 parameters for sulfur , 1990 .

[47]  Krishnan Raghavachari,et al.  Gaussian‐1 theory of molecular energies for second‐row compounds , 1990 .

[48]  M. Dewar,et al.  AM1 parameters for aluminum , 1990 .

[49]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[50]  Michael J. S. Dewar,et al.  AM1 parameters for phosphorus , 1989 .

[51]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[52]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[53]  Michael J. S. Dewar,et al.  Extension of AM1 to the halogens , 1988 .

[54]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[55]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[56]  M. Dewar,et al.  AM1 calculations for compounds containing silicon , 1987 .

[57]  W. Thiel,et al.  Reference Energies in Semiempirical Parametrizations , 1986, Journal of computational chemistry.

[58]  Eamonn F. Healy,et al.  Revised MNDO Parameters for Silicon , 1986 .

[59]  P. von Ragué Schleyer,et al.  Atom equivalents for relating ab initio energies to enthalpies of formation , 1985 .

[60]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[61]  M. Dewar,et al.  Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions , 1985 .

[62]  Kenneth B. Wiberg,et al.  Group equivalents for converting ab initio energies to enthalpies of formation , 1984 .

[63]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[64]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[65]  Henry S. Rzepa,et al.  Ground states of molecules. 53. MNDO calculations for molecules containing chlorine , 1983 .

[66]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[67]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[68]  Henry S. Rzepa,et al.  MNDO parameters for third period elements , 1978 .

[69]  M. Dewar,et al.  Ground states of molecules. 40. MNDO results for molecules containing fluorine , 1977 .

[70]  Walter Thiel,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[71]  Walter Thiel,et al.  Ground States of Molecules. 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen , 1977 .

[72]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[73]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[74]  Mark S. Gordon,et al.  Scaling all correlation energy in perturbation theory calculations of bond energies and barrier heights , 1986 .

[75]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .