Evolution process of the synthesis of TiC in the Cu-Ti-C system

[1]  G. Spinolo,et al.  A new approach to the modeling of SHS reactions: Combustion synthesis of transition metal aluminides , 2006 .

[2]  Hao Wang,et al.  Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in-situ TiC particles , 2005 .

[3]  Peter Greil,et al.  Synthesis of TiC/Ti–Cu composites by pressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by 3D-printing , 2005 .

[4]  Jiecai Han,et al.  Ablation-Resistance of Combustion Synthesized TiB2–Cu Cermet , 2004 .

[5]  P. Shipway,et al.  Reaction synthesis of Cu-TiCx master-alloys for the production of copper-based composites , 2004 .

[6]  R. Arróyave,et al.  Thermodynamic assessment of the Cu–Ti–Zr system , 2003 .

[7]  Jerry Y. H. Fuh,et al.  In-situ formation of copper matrix composites by laser sintering , 2002 .

[8]  P. Shipway,et al.  Carbide stoichiometry in TiCx and Cu–TiCx produced by self-propagating high-temperature synthesis , 2002 .

[9]  M. Kobashi,et al.  Fabrication of TiC/Cu Composites by Combustion Synthesis in Cu-Ti-C System , 2001 .

[10]  A. Jarfors The influence of carbon on the phases in the copper-titanium system and their precipitation , 1999 .

[11]  D. Chung,et al.  Titanium diboride copper-matrix composites , 1997 .

[12]  A. Chrysanthou,et al.  Characteristics of the combustion synthesis of TiC and Fe-TiC composites , 1994 .

[13]  D. G. Morris,et al.  Copper - Al2O3 composites prepared by reactive spray deposition , 1994 .

[14]  H. Yi,et al.  Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials , 1990 .

[15]  Charles E. Semler,et al.  Kinetics of Combustion Synthesis in the Ti‐C and Ti‐C‐Ni Systems , 1989 .

[16]  K. Warrier,et al.  Mechanical, Electrical, and Electrical Contact Properties of Cu–TiO2 Composites , 1986 .

[17]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[18]  J. Murray The Cu−Ti (Copper-Titanium) system , 1983 .