Cahn-Hilliard on surfaces: A numerical study

Abstract The Cahn–Hilliard system has been used to describe a wide number of phase separation processes, from co-polymer systems to lipid membranes. In this work the convergence properties of a closest-point based scheme are investigated. In place of solving the original fourth-order system directly, two coupled second-order systems are solved. The system is solved using an approximate Schur-decomposition as a preconditioner. The results indicate that with a sufficiently high-order time discretization the method only depends on the underlying spatial resolution.

[1]  L Truskinovsky,et al.  Topological Transitions in Liquid/Liquid Interfaces , 2019, Free boundary problems:.

[2]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[3]  J. Lowengrub,et al.  Locomotion, wrinkling, and budding of a multicomponent vesicle in viscous fluids , 2012 .

[4]  F. Solis,et al.  Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties. , 2014, The Journal of chemical physics.

[5]  Daniel A. Cogswell A phase-field study of ternary multiphase microstructures , 2010 .

[6]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[7]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[10]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[11]  D. Salac,et al.  Level set jet schemes for stiff advection equations: The semijet method , 2013, 1509.02834.

[12]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[13]  Yunzhi Wang,et al.  Phase field modeling of defects and deformation , 2010 .

[14]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[15]  Colin B. Macdonald,et al.  The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces , 2013, SIAM J. Sci. Comput..

[16]  B. Fornberg Generation of finite difference formulas on arbitrarily spaced grids , 1988 .

[17]  A. Karma,et al.  Phase-field model of mode III dynamic fracture. , 2001, Physical review letters.

[18]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[19]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[20]  J. Warren,et al.  Diffuse-interface theory for structure formation and release behavior in controlled drug release systems. , 2007, Acta biomaterialia.

[21]  van de Fn Frans Vosse,et al.  Diffuse-interface modelling of thermocapillary flow instabilities in a Hele-Shaw cell , 2001, Journal of Fluid Mechanics.

[22]  David Jacqmin,et al.  An energy approach to the continuum surface tension method , 1996 .

[23]  Benjamin Seibold,et al.  Jet schemes for advection problems , 2011, 1101.5374.

[24]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[25]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .

[26]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[27]  Axel Voigt,et al.  Surface Phase Separation and Flow in a Simple Model of Multicomponent Drops and Vesicles , 2007 .

[28]  Yuji Nakatsukasa,et al.  Fourth-Order Time-Stepping For Stiff PDEs On The Sphere , 2017, SIAM J. Sci. Comput..

[29]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .