Existence of a ground state solution for Choquard equation with the upper critical exponent

Abstract In this paper, we investigate the following Choquard equation − Δ u + u = ( I α ∗ | u | N + α N − 2 ) | u | N + α N − 2 − 2 u + g ( u ) in R N , where N ⩾ 3 , α ∈ ( 0 , N ) , I α is the Riesz potential and g is a given function. If g satisfies the general subcritical growth conditions, we obtain the existence of a positive ground state solution.

[1]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics , 2012, 1205.6286.

[2]  Jean Van Schaftingen,et al.  Existence of groundstates for a class of nonlinear Choquard equations , 2012, 1212.2027.

[3]  E. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[4]  Newtonian quantum gravity , 1995, quant-ph/9507001.

[5]  L. Jeanjean Existence of solutions with prescribed norm for semilinear elliptic equations , 1997 .

[6]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .

[8]  Minbo Yang,et al.  On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents , 2016, 1605.05038.

[9]  Jean Van Schaftingen,et al.  Odd symmetry of least energy nodal solutions for the Choquard equation , 2016, 1606.05668.

[10]  P. Lions,et al.  The Choquard equation and related questions , 1980 .

[11]  L. Jeanjean,et al.  A positive solution for a nonlinear Schrödinger equation on Rn , 2005 .

[12]  Jinmyoung Seok,et al.  Nonlinear Choquard equations: Doubly critical case , 2017, Appl. Math. Lett..

[13]  Irene M. Moroz,et al.  Spherically symmetric solutions of the Schrodinger-Newton equations , 1998 .

[14]  C. O. Alves,et al.  Radially Symmetric Solutions for a Class of Critical Exponent Elliptic Problems in R N , 1996 .

[15]  N. Ikoma,et al.  Nonlinear scalar field equations in $\mathbb{R}^{N}$: mountain pass and symmetric mountain pass approaches , 2010 .

[16]  S. I. Pekar,et al.  Untersuchungen über die Elektronentheorie der Kristalle , 1954 .

[17]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[18]  Irene M. Moroz,et al.  An analytical approach to the Schrödinger-Newton equations , 1999 .

[19]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[20]  C. O. Alves,et al.  Existence of a ground state solution for a nonlinear scalar field equation with critical growth , 2012 .

[21]  Lin Zhao,et al.  Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation , 2010 .

[22]  Jian Zhang,et al.  The critical case for a Berestycki-Lions theorem , 2014 .

[23]  Jiu Liu,et al.  Ground state solution for a class of Schrödinger equations involving general critical growth term , 2017 .

[24]  J. Chabrowski On the existence ofG-symmetric entire solutions for semilinear elliptic equations , 1992 .

[25]  Haim Brezis,et al.  Positive solutions of nonlinear elliptic equations involving critical sobolev exponents , 1983 .

[26]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[27]  Jinmyoung Seok,et al.  Nonlinear Choquard equations involving a critical local term , 2017, Appl. Math. Lett..

[28]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent , 2014, 1403.7414.

[29]  T. Küpper,et al.  MULTIPLE POSITIVE SOLUTIONS AND BIFURCATION FOR AN EQUATION RELATED TO CHOQUARD’S EQUATION , 2003, Proceedings of the Edinburgh Mathematical Society.

[30]  Michael Struwe,et al.  A global compactness result for elliptic boundary value problems involving limiting nonlinearities , 1984 .