Fast nanomechanical spectroscopy of soft matter

A method that combines high spatial resolution, quantitative and non-destructive mapping of surfaces and interfaces is a long standing goal in nanoscale microscopy. The method would facilitate the development of hybrid devices and materials made up of nanostructures of different properties. Here we develop a multifrequency force microscopy method that enables simultaneous mapping of nanomechanical spectra of soft matter surfaces with nanoscale spatial resolution. The properties include the Young's modulus and the viscous or damping coefficients. In addition, it provides the peak force and the indentation. The method does not limit the data acquisition speed nor the spatial resolution of the force microscope. It is non-invasive and minimizes the influence of the tip radius on the measurements. The same tip is used to measure in air heterogeneous interfaces with near four orders of magnitude variations in the elastic modulus, from 1 MPa to 3 GPa.

[1]  A Passian,et al.  New modes for subsurface atomic force microscopy through nanomechanical coupling. , 2010, Nature nanotechnology.

[2]  A. Knoll,et al.  Tapping mode atomic force microscopy on polymers: Where is the true sample surface? , 2001 .

[3]  Richard S. Chadwick,et al.  Determination of the elastic moduli of thin samples and adherent cells using conical AFM tips , 2012, Nature nanotechnology.

[4]  Ricardo Garcia,et al.  Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy , 2001 .

[5]  S. Solares,et al.  Triple-frequency intermittent contact atomic force microscopy characterization: Simultaneous topographical, phase, and frequency shift contrast in ambient air , 2010 .

[6]  Olav Solgaard,et al.  An atomic force microscope tip designed to measure time-varying nanomechanical forces , 2007, Nature Nanotechnology.

[7]  R. Proksch,et al.  Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy , 2012 .

[8]  Justin Legleiter,et al.  The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment , 2009, Nanotechnology.

[9]  Abdullah Atalar,et al.  Force spectroscopy using bimodal frequency modulation atomic force microscopy , 2011 .

[10]  Franz J. Giessibl,et al.  Forces and frequency shifts in atomic-resolution dynamic-force microscopy , 1997 .

[11]  Ricardo Garcia,et al.  Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. , 2013, Nanoscale.

[12]  M. Salapaka,et al.  Real-time probe based quantitative determination of material properties at the nanoscale , 2013, Nanotechnology.

[13]  M. Tsukada,et al.  Visualization of hydration layers on muscovite mica in aqueous solution by frequency-modulation atomic force microscopy. , 2013, The Journal of chemical physics.

[14]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[15]  Chanmin Su,et al.  Mechanical mapping of single membrane proteins at submolecular resolution. , 2011, Nano letters.

[16]  E. Tholén,et al.  Interaction imaging with amplitude-dependence force spectroscopy , 2012, Nature Communications.

[17]  Ricardo Garcia,et al.  Calibration of higher eigenmode spring constants of atomic force microscope cantilevers , 2010, Nanotechnology.

[18]  W R Broughton,et al.  The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young's modulus measurement of polymers , 2011 .

[19]  Daniel J. Muller,et al.  High-resolution atomic force microscopy and spectroscopy of native membrane proteins , 2011 .

[20]  S. Solares,et al.  Amplitude modulation dynamic force microscopy imaging in liquids with atomic resolution: comparison of phase contrasts in single and dual mode operation , 2013, Nanotechnology.

[21]  Ricardo Garcia,et al.  Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever , 2004 .

[22]  R. Garcia,et al.  Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes , 2006 .

[23]  Y. Sugawara,et al.  Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopya) , 2010 .

[24]  T. Nishi,et al.  Characterization of Surface Viscoelasticity and Energy Dissipation in a Polymer Film by Atomic Force Microscopy , 2011 .

[25]  Daniel J Müller,et al.  Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. , 2013, ACS nano.

[26]  Daniel Platz,et al.  Model-based extraction of material properties in multifrequency atomic force microscopy , 2012 .

[27]  Ricardo Garcia,et al.  Nanomechanical mapping of soft matter by bimodal force microscopy , 2013 .

[28]  A. Raman,et al.  Origins of phase contrast in the atomic force microscope in liquids , 2009, Proceedings of the National Academy of Sciences.

[29]  M. Dong,et al.  A nanomechanical interface to rapid single-molecule interactions. , 2011, Nature communications.

[30]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[31]  Igor Sokolov,et al.  Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[32]  John E. Sader,et al.  Quantitative force measurements using frequency modulation atomic force microscopy—theoretical foundations , 2005 .

[33]  Ernst Meyer,et al.  Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy. , 2009, Physical review letters.

[34]  E. Meyer,et al.  Measuring electric field induced subpicometer displacement of step edge ions. , 2012, Physical review letters.

[35]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[36]  Francesc Pérez-Murano,et al.  Polystyrene as a brush layer for directed self-assembly of block co-polymers , 2013 .

[37]  J. Sader,et al.  Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus , 2004 .

[38]  Thomas Thundat,et al.  Imaging nanoparticles in cells by nanomechanical holography. , 2008, Nature nanotechnology.

[39]  Henning Stahlberg,et al.  Characterization of the motion of membrane proteins using high-speed atomic force microscopy. , 2012, Nature nanotechnology.

[40]  S. Scheuring,et al.  High-Resolution Atomic Force Microscopy of Native Membranes , 2011, Life at the Nanoscale.

[41]  Daniel Platz,et al.  Intermodulation atomic force microscopy , 2008 .

[42]  Francesco Stellacci,et al.  Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. , 2010, Nature nanotechnology.

[43]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[44]  C. Riesch,et al.  Subsurface imaging of soft polymeric materials with nanoscale resolution. , 2011, ACS nano.

[45]  E. Nauman,et al.  Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. , 2011, Nature nanotechnology.

[46]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[47]  T. Fukuma,et al.  Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy. , 2012, ACS nano.

[48]  Ricardo Garcia,et al.  Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus , 2012, Beilstein journal of nanotechnology.

[49]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[50]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[51]  M. Dong,et al.  Determination of protein structural flexibility by microsecond force spectroscopy. , 2009, Nature nanotechnology.