Convergence of a Hybrid Projection-Proximal Point Algorithm Coupled with Approximation Methods in Convex Optimization
暂无分享,去创建一个
[1] B. Lemaire. About the Convergence of the Proximal Method , 1992 .
[2] M. Solodov,et al. A UNIFIED FRAMEWORK FOR SOME INEXACT PROXIMAL POINT ALGORITHMS , 2001 .
[3] Roberto Cominetti,et al. Primal and dual convergence of a proximal point exponential penalty method for linear programming , 2002, Math. Program..
[4] Clóvis C. Gonzaga,et al. Path-Following Methods for Linear Programming , 1992, SIAM Rev..
[5] Hédy Attouch,et al. Viscosity Solutions of Minimization Problems , 1996, SIAM J. Optim..
[6] Michael C. Ferris,et al. Operator-Splitting Methods for Monotone Affine Variational Inequalities, with a Parallel Application to Optimal Control , 1998, INFORMS J. Comput..
[7] N. V. Tretyakov,et al. Modified Lagrangians and Monotone Maps in Optimization , 1996 .
[8] A. Auslender. Numerical methods for nondifferentiable convex optimization , 1987 .
[9] Fabiana Zama,et al. Iterative methods for ill-posed problems and semiconvergent sequences , 2006 .
[10] I. Konnov. Combined Relaxation Methods for Variational Inequalities , 2000 .
[11] N. Megiddo. Pathways to the optimal set in linear programming , 1989 .
[12] B. Martinet. Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .
[13] Roberto Cominetti,et al. Asymptotic analysis of the exponential penalty trajectory in linear programming , 1994, Math. Program..
[14] P. Alart,et al. Penalization in non-classical convex programming via variational convergence , 1991, Math. Program..
[15] Gian-Carlo Rota. Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .
[16] F. Alvarez. Absolute minimizer in convex programming by exponential penalty. , 2000 .
[17] E. G. Gol'shtein,et al. Modified Lagrangians in Convex Programming and their Generalizations , 1979 .
[18] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[19] Jean Charles Gilbert,et al. Numerical Optimization: Theoretical and Practical Aspects , 2003 .
[20] E. G. Golʹshteĭn,et al. Modified Lagrangians and monotone maps in optimization , 1996 .
[21] R. Cominetti. Coupling the Proximal Point Algorithm with Approximation Methods , 1997 .
[22] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .
[23] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[24] R. Cominetti. Nonlinear Averages and Convergence of Penalty Trajectories in Convex Programming , 1999 .
[25] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[26] Khalil Mouallif,et al. Une méthode de pénalisation exponentielle associée à une régularisation proximale , 1987 .
[27] Variational metric and exponential penalization , 1990 .
[28] Osman Güer. On the convergence of the proximal point algorithm for convex minimization , 1991 .
[29] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[30] T. Champion. Tubularity and Asymptotic Convergence of Penalty Trajectories in Convex Programming , 2002, SIAM J. Optim..
[31] Claude Lemaréchal,et al. Convergence of some algorithms for convex minimization , 1993, Math. Program..
[32] M. Solodov,et al. A hybrid projection-proximal point algorithm. , 1998 .
[33] A. Auslender,et al. Penalty-proximal methods in convex programming , 1987 .
[34] G. Sonnevend. An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .
[35] Roberto Cominetti,et al. Coupling General Penalty Schemes for Convex Programming with the Steepest Descent and the Proximal Point Algorithm , 2002, SIAM J. Optim..
[36] Alexander Kaplan,et al. Proximal Methods in View of Interior-Point Strategies , 1995, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[37] Felipe Alvarez,et al. Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space , 2003, SIAM J. Optim..
[38] Roberto Cominetti,et al. Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming , 1997, Math. Oper. Res..
[39] Alfredo N. Iusem,et al. On the need for hybrid steps in hybrid proximal point methods , 2001, Oper. Res. Lett..
[40] H. Attouch,et al. L p approximation of varitional problems in L 1 and L , 1999 .
[41] R. Tyrrell Rockafellar,et al. Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..
[42] Michael A. Saunders,et al. A Practical Interior-Point Method for Convex Programming , 1995, SIAM J. Optim..
[43] M. J. D. Powell,et al. Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .
[44] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[45] D. Bertsekas. Approximation procedures based on the method of multipliers , 1977 .
[46] Alexandre Cabot,et al. Proximal Point Algorithm Controlled by a Slowly Vanishing Term: Applications to Hierarchical Minimization , 2005, SIAM J. Optim..
[47] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[48] Renato D. C. Monteiro,et al. On the Existence and Convergence of the Central Path for Convex Programming and Some Duality Results , 1998, Comput. Optim. Appl..
[49] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[50] H. Attouch,et al. A Dynamical Approach to Convex Minimization Coupling Approximation with the Steepest Descent Method , 1996 .
[51] Anders Forsgren,et al. Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..
[52] B. Lemaire,et al. Convergence of diagonally stationary sequences in convex optimization , 1994 .
[53] H. Attouch. Variational convergence for functions and operators , 1984 .
[54] J. Frédéric Bonnans,et al. Numerical Optimization: Theoretical and Practical Aspects (Universitext) , 2006 .
[55] M. Solodov,et al. A UNIFIED FRAMEWORK FOR SOME INEXACT PROXIMAL POINT ALGORITHMS , 2001 .
[56] B. Lemaire. Coupling optimization methods and variational convergence , 1988 .