A Dynamical System for PageRank with Time-Dependent Teleportation

Abstract We propose a dynamical system that captures changes to the network centrality of nodes as external interest in those nodes varies. We derive this system by adding time-dependent teleportation to the PageRank score. The result is not a single set of importance scores, but rather a time-dependent set. These can be converted into ranked lists in a variety of ways, for instance, by taking the largest change in the importance score. For an interesting class of dynamic teleportation functions, we derive closed-form solutions for the dynamic PageRank vector. The magnitude of the deviation from a static PageRank vector is given by a PageRank problem with complex-valued teleportation parameters. Moreover, these dynamical systems are easy to evaluate. We demonstrate the utility of dynamic teleportation on both the article graph of Wikipedia, where the external interest information is given by the number of hourly visitors to each page, and the Twitter social network, where external interest is the number of tweets per month. For these problems, we show that using information from the dynamical system helps improve a prediction task and identify trends in the data.

[1]  David F. Gleich,et al.  Tracking the random surfer: empirically measured teleportation parameters in PageRank , 2010, WWW '10.

[2]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[3]  Richard B. Lehoucq,et al.  Dynamical Systems and Non-Hermitian Iterative Eigensolvers , 2009, SIAM J. Numer. Anal..

[4]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[5]  Gene H. Golub,et al.  Three results on the PageRank vector: eigenstructure, sensitivity, and the derivative , 2007, Web Information Retrieval and Linear Algebra Algorithms.

[6]  Serge Abiteboul,et al.  Adaptive on-line page importance computation , 2003, WWW '03.

[7]  Padhraic Smyth,et al.  EventRank: a framework for ranking time-varying networks , 2005, LinkKDD '05.

[8]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[9]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Eli Upfal,et al.  PageRank on an evolving graph , 2012, KDD.

[11]  C. Runge Ueber die numerische Auflösung von Differentialgleichungen , 1895 .

[12]  Sebastiano Vigna,et al.  Traps and Pitfalls of Topic-Biased PageRank , 2007, WAW.

[13]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[14]  Tamara G. Kolda,et al.  Temporal Link Prediction Using Matrix and Tensor Factorizations , 2010, TKDD.

[15]  Panayiotis Tsaparas,et al.  Using non-linear dynamical systems for web searching and ranking , 2004, PODS.

[16]  Amy Nicole Langville,et al.  Updating pagerank with iterative aggregation , 2004, WWW Alt. '04.

[17]  Ryan A. Rossi,et al.  Dynamic PageRank Using Evolving Teleportation , 2012, WAW.

[18]  Andrei Z. Broder,et al.  Workshop on Algorithms and Models for the Web Graph , 2007, WAW.

[19]  Paolo Boldi TotalRank: ranking without damping , 2005, WWW '05.

[20]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[21]  Sreenivas Gollapudi,et al.  Estimating PageRank on graph streams , 2008, PODS.

[22]  David F. Gleich,et al.  Random Alpha PageRank , 2009, Internet Math..

[23]  Franco Scarselli,et al.  Inside PageRank , 2005, TOIT.

[24]  Bonnie Berger,et al.  Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology , 2007, RECOMB.

[25]  Steve Chien,et al.  Link Evolution: Analysis and Algorithms , 2004, Internet Math..

[26]  Stefano Serra Capizzano,et al.  A General Setting for the Parametric Google Matrix , 2006, Internet Math..

[27]  Amir F. Atiya,et al.  An Empirical Comparison of Machine Learning Models for Time Series Forecasting , 2010 .

[28]  David F. Gleich,et al.  Algorithms and Models for the Web Graph , 2014, Lecture Notes in Computer Science.

[29]  Ilse C. F. Ipsen,et al.  Ordinal Ranking for Google's PageRank , 2008, SIAM J. Matrix Anal. Appl..

[30]  Albert-László Barabási,et al.  Collective Response of Human Populations to Large-Scale Emergencies , 2011, PloS one.

[31]  Christos Faloutsos,et al.  Fast Random Walk with Restart and Its Applications , 2006, Sixth International Conference on Data Mining (ICDM'06).

[32]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[33]  Sebastiano Vigna,et al.  Paradoxical Effects in PageRank Incremental Computations , 2005, Internet Math..

[34]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[35]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[36]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[37]  A. Berman,et al.  Nonnegative matrices in dynamic systems , 1979 .

[38]  Santo Fortunato,et al.  Characterizing and modeling the dynamics of online popularity , 2010, Physical review letters.

[39]  Hector Garcia-Molina,et al.  Combating Web Spam with TrustRank , 2004, VLDB.

[40]  Luca Becchetti,et al.  Link analysis for Web spam detection , 2008, TWEB.