Water in the atmosphere of HD 209458b from 3.6–8 μm IRAC photometric observations in primary transit

The hot Jupiter HD 209458b was observed during primary transit at 3.6, 4.5, 5.8 and 8.0 µm using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We describe the procedures we adopted to correct for the systematic effects present in the IRAC data and the subsequent analysis. The light curves were fitted including limb-darkening effects and fitted using Markov Chain Monte Carlo and prayer-bead Monte Carlo techniques, obtaining almost identical results. The final depth measurements obtained by a combined Markov Chain Monte Carlo fit are at 3.6 µm, 1.469 ± 0.013 and 1.448 ± 0.013 per cent; at 4.5 µm, 1.478 ± 0.017 per cent; at 5.8 µm, 1.549 ± 0.015 per cent; and at 8.0 µm, 1.535 ± 0.011 per cent. Our results clearly indicate the presence of water in the planetary atmosphere. Our broad-band photometric measurements with IRAC prevent us from determining the additional presence of other molecules such as CO, CO2 and methane for which spectroscopy is needed. While water vapour with a mixing ratio of 10 −4 to 10 −3 combined with thermal profiles retrieved from the day side may provide a very good fit to our observations, this data set alone is unable to resolve completely the degeneracy between water abundance and atmospheric thermal profile.

[1]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[2]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[3]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[4]  Zucker,et al.  The Spectroscopic Orbit of the Planetary Companion Transiting HD 209458. , 2000, The Astrophysical journal.

[5]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[6]  S. Seager,et al.  Source of Atomic Hydrogen in the Atmosphere of HD 209458b , 2003, astro-ph/0307037.

[7]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[8]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[9]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[10]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[11]  T. Metcalfe,et al.  Stellar structure modeling using a parallel genetic algorithm for objective global optimization , 2002, astro-ph/0208315.

[12]  M. Marley,et al.  The dusty atmosphere of the brown dwarf Gliese 229B. , 1998, Science.

[13]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[14]  S. Tashkun,et al.  CDSD-1000, the high-temperature carbon dioxide spectroscopic databank , 2003 .

[15]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[16]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[17]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[18]  R. Kuschnig,et al.  WATER, METHANE, AND CARBON DIOXIDE PRESENT IN THE DAYSIDE SPECTRUM OF THE EXOPLANET HD 209458b , 2009, 0908.4010.

[19]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[20]  Természettudományok Extrasolar Planets Encyclopaedia , 2010 .

[21]  T. Barman Identification of Absorption Features in an Extrasolar Planet Atmosphere , 2007, 0704.1114.

[22]  Sara Seager,et al.  On the Insignificance of Photochemical Hydrocarbon Aerosols in the Atmospheres of Close-in Extrasolar Giant Planets , 2004 .

[23]  F. Bouchy,et al.  A Spitzer Search for Water in the Transiting Exoplanet HD 189733b , 2007, 0709.0576.

[24]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[25]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[26]  R. Paul Butler,et al.  Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System , 2005, astro-ph/0504555.

[27]  Michael Doran,et al.  Analyse this! A cosmological constraint package for CMBEASY , 2004 .

[28]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[29]  Drake Deming,et al.  A spectrum of an extrasolar planet , 2007, Nature.

[30]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[31]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[32]  S. T. Megeath,et al.  A Sensitive Search for Variability in Late L Dwarfs: The Quest for Weather , 2005 .

[33]  U. Jørgensen,et al.  High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres , 2001 .

[34]  David M. Kipping,et al.  Detection of a transit by the planetary companion of HD 80606 , 2009, 0902.4616.

[35]  Jennifer C. Yee,et al.  Analytic Approximations for Transit Light-Curve Observables, Uncertainties, and Covariances , 2008, 0805.0238.

[36]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[37]  I. Ribas,et al.  Primary Transit of the Planet HD 189733b at 3.6 and 5.8 μm , 2007, 0711.2142.

[38]  D. Ehrenreich,et al.  Infrared Transmission Spectra for Extrasolar Giant Planets , 2006, astro-ph/0611174.

[39]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[40]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[41]  Dimitar D. Sasselov,et al.  HD 209458: Physical Parameters of the Parent Star and the Transiting Planet , 2001, astro-ph/0111494.

[42]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[43]  D. Kipping Transiting planets – light-curve analysis for eccentric orbits , 2008, 0807.0096.

[44]  Portugal,et al.  Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b , 2007, 0707.2261.

[45]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[46]  C. H. Ling,et al.  MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET , 2008, 0809.2997.

[47]  P. Bernath,et al.  Hot methane spectra for astrophysical applications , 2003 .

[48]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[49]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.