Helical membrane protein folding, stability, and evolution.

Helical membrane protein folding and oligomerization can be usefully conceptualized as involving two energetically distinct stages-the formation and subsequent side-to-side association of independently stable transbilayer helices. The interactions of helices with the bilayer, with prosthetic groups, and with each other are examined in the context of recent evidence. We conclude that the two-stage concept remains useful as an approach to simplifying discussions of stability, as a framework for folding concepts, and as a basis for understanding membrane protein evolution.

[1]  P. Booth,et al.  Membrane protein folding. , 1999, Current opinion in structural biology.

[2]  H. G. Khorana,et al.  Amino acid sequence of bacteriorhodopsin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. Schulz,et al.  The three‐dimensional structure of porin from Rhodobacter capsulatus at 3 Å resolution , 1990, FEBS letters.

[4]  J M Sturtevant,et al.  Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin. , 1992, Biochemistry.

[5]  W. Vermaas Evolution of heliobacteria: implications for photosynthetic reaction center complexes. , 1994, Photosynthesis research.

[6]  A. Cheng,et al.  Three-dimensional organization of a human water channel , 1997, Nature.

[7]  J. Rosenbusch,et al.  Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution , 1995, Science.

[8]  F. Reiss-Husson,et al.  Phase transitions in lipids in relation to the structure of membranes. , 1967, Advances in biological and medical physics.

[9]  S. Alberti A phosphoinositide‐binding sequence is shared by PH domain target molecules—a model for the binding of PH domains to proteins , 1998, Proteins.

[10]  Stephen H. White,et al.  Hydropathy Plots and the Prediction of Membrane Protein Topology , 1994 .

[11]  M. Yeager,et al.  Projection structure of a gap junction membrane channel at 7 Å resolution , 1997, Nature Structural Biology.

[12]  G. Schulz,et al.  Structure of porin refined at 1.8 A resolution. , 1992, Journal of molecular biology.

[13]  Howard A. Shuman The genetics of active transport in bacteria. , 1987, Annual review of genetics.

[14]  R. Gennis,et al.  The use of gene fusions to determine the topology of all of the subunits of the cytochrome o terminal oxidase complex of Escherichia coli. , 1990, The Journal of biological chemistry.

[15]  C. Deber,et al.  Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. , 1993, Journal of molecular biology.

[16]  D. Engelman,et al.  The effect of point mutations on the free energy of transmembrane alpha-helix dimerization. , 1997, Journal of molecular biology.

[17]  H. Khorana,et al.  Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. , 1981, The Journal of biological chemistry.

[18]  M. Saraste,et al.  The Bacillus subtilis cytochrome-c oxidase. Variations on a conserved protein theme. , 1991, European journal of biochemistry.

[19]  U. Sonnewald,et al.  Reconstitution of an active lactose carrier in vivo by simultaneous synthesis of two complementary protein fragments , 1990, Journal of bacteriology.

[20]  Akinori Kidera,et al.  Surface of bacteriorhodopsin revealed by high-resolution electron crystallography , 1997, Nature.

[21]  M. Dumont,et al.  Assembly of G protein-coupled receptors from fragments: identification of functional receptors with discontinuities in each of the loops connecting transmembrane segments. , 1999, Biochemistry.

[22]  R. Dutzler,et al.  Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. , 1999, Structure.

[23]  J. Popot,et al.  On the Spatial Organization of Hemes and Chlorophyll in Cytochrome b 6 f , 2000, The Journal of Biological Chemistry.

[24]  D. Engelman,et al.  Rotational orientation of transmembrane alpha-helices in bacteriorhodopsin. A neutron diffraction study. , 1994, Journal of molecular biology.

[25]  G. Heijne,et al.  Membrane protein assembly , 1995 .

[26]  Dirk W. Heinz,et al.  How amino-acid insertions are allowed in an α-helix of T4 lysozyme , 1993, Nature.

[27]  H. Khorana,et al.  Regeneration of native bacteriorhodopsin structure from fragments. , 1984, The Journal of biological chemistry.

[28]  P. Fromme,et al.  Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system , 1996, Nature Structural Biology.

[29]  T Surrey,et al.  Folding and membrane insertion of the trimeric beta-barrel protein OmpF. , 1996, Biochemistry.

[30]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[31]  R. Koebnik In vivo membrane assembly of split variants of the E.coli outer membrane protein OmpA. , 1996, The EMBO journal.

[32]  Kai Simons,et al.  Lipid Domain Structure of the Plasma Membrane Revealed by Patching of Membrane Components , 1998, The Journal of cell biology.

[33]  J. Chow,et al.  Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2 , 1996, Nature Structural Biology.

[34]  K. Williams,et al.  Three-dimensional structure of the ion-coupled transport protein NhaA , 2000, Nature.

[35]  J. Hoch,et al.  The primary structure of the mitochondrial energy-linked nicotinamide nucleotide transhydrogenase deduced from the sequence of cDNA clones. , 1988, The Journal of biological chemistry.

[36]  Paul D. Adams,et al.  Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban , 1995, Nature Structural Biology.

[37]  J. Deisenhofer,et al.  Inhibitor binding changes domain mobility in the iron-sulfur protein of the mitochondrial bc1 complex from bovine heart. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  B. Kruijff Lipid polymorphism and biomembrane function , 1997 .

[39]  K Ito,et al.  A positively charged region is a determinant of the orientation of cytoplasmic membrane proteins in Escherichia coli. , 1990, The Journal of biological chemistry.

[40]  T. A. Link,et al.  Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. , 1998, Science.

[41]  B. Wilkinson,et al.  Molecular architecture of the ER translocase probed by chemical crosslinking of Sss1p to complementary fragments of Sec61p , 1997, The EMBO journal.

[42]  E. Lattman,et al.  The alpha aneurism: a structural motif revealed in an insertion mutant of staphylococcal nuclease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. von Heijne,et al.  The cytoplasmic domain of Escherichia coli leader peptidase is a "translocation poison" sequence. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Herrmann,et al.  Nucleotide sequence of the gene for apocytochrome b‐559 on the spinach plastid chromosome: implications for the structure of the membrane protein , 1984 .

[45]  D. Engelman Surface Area per Lipid Molecule in the Intact Membrane of the Human Red Cell , 1969, Nature.

[46]  Kay Diederichs,et al.  Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose , 1998, Nature Structural Biology.

[47]  C. Chothia,et al.  Structure of proteins: packing of alpha-helices and pleated sheets. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. H. Kalk,et al.  Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. , 1999 .

[49]  K. Diederichs,et al.  Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. , 1998, Science.

[50]  Joost C. M. Uitdehaag,et al.  General model for lipid-mediated two-dimensional array formation of membrane proteins: application to bacteriorhodopsin. , 1998, Biophysical journal.

[51]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[52]  S. Yoshikawa,et al.  Crystal Structure of Bovine Heart Cytochrome c Oxidase at 2.8 Å Resolution , 1998, Journal of bioenergetics and biomembranes.

[53]  O. El-Kabbani,et al.  Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. , 1991, Biochemistry.

[54]  M. Schiffer,et al.  Structure of Rhodopseudomonas sphaeroides R‐26 reaction center , 1986, FEBS letters.

[55]  N. Ben-Tal,et al.  Helix-helix interactions in lipid bilayers. , 1996, Biophysical journal.

[56]  W. Kühlbrandt,et al.  Three-dimensional map of the plasma membrane H+-ATPase in the open conformation , 1998, Nature.

[57]  T O Yeates,et al.  Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[58]  H. Khorana,et al.  Regeneration of the native bacteriorhodopsin structure from two chymotryptic fragments. , 1983, The Journal of biological chemistry.

[59]  R. Cantor,et al.  The lateral pressure profile in membranes: a physical mechanism of general anesthesia. , 1997, Toxicology letters.

[60]  G. Schulz,et al.  The structure of the membrane protein squalene-hopene cyclase at 2.0 A resolution. , 1999, Journal of molecular biology.

[61]  J. Beckwith,et al.  How many membrane proteins are there? , 1998, Protein science : a publication of the Protein Society.

[62]  D. Wetlaufer Nucleation, rapid folding, and globular intrachain regions in proteins. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[63]  D C Rees,et al.  Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. , 1997, Science.

[64]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[65]  C. Tanford,et al.  Empirical correlation between hydrophobic free energy and aqueous cavity surface area. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. J. Conroy,et al.  A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions. , 1999, Biopolymers.

[67]  L M Amzel,et al.  Loss of translational entropy in binding, folding, and catalysis , 1997, Proteins.

[68]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[69]  D. Engelman,et al.  Bacteriorhodopsin is an inside-out protein. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Karlyne M. Reilly,et al.  A biophysical study of integral membrane protein folding. , 1997, Biochemistry.

[71]  D. Rees,et al.  Structure of the Escherichia coli fumarate reductase respiratory complex. , 1999, Science.

[72]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[73]  J Deisenhofer,et al.  Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. , 1997, Science.

[74]  M. Tanner,et al.  Functional reassembly of the anion transport domain of human red cell band 3 (AE1) from multiple and non‐complementary fragments , 1998, FEBS letters.

[75]  R. Henderson,et al.  Protein conformational changes in the bacteriorhodopsin photocycle. , 1999, Journal of molecular biology.

[76]  S. Anemüller,et al.  Cytochrome aa3 from Sulfolobus acidocaldarius. A single-subunit, quinol-oxidizing archaebacterial terminal oxidase. , 1990, European journal of biochemistry.

[77]  H Luecke,et al.  Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. , 1998, Science.

[78]  G. Schulz,et al.  The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. , 1999, Structure.

[79]  D. Higgins,et al.  Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. , 1994, The EMBO journal.

[80]  Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. , 1973 .

[81]  G. Schulz,et al.  Molecular architecture and electrostatic properties of a bacterial porin. , 1991, Science.

[82]  A. Rutherford,et al.  Photosynthetic reaction centres: variations on a common structural theme? , 1991, Trends in biochemical sciences.

[83]  M. Jennings Topography of membrane proteins. , 1989, Annual review of biochemistry.

[84]  P. Fromme,et al.  Structure of Photosystem I at 4.5 Å resolution: A short review including evolutionary aspects , 1996 .

[85]  N. Unwin Projection structure of the nicotinic acetylcholine receptor: distinct conformations of the alpha subunits. , 1996, Journal of molecular biology.

[86]  J. Bouchaud,et al.  Plastoquinone compartmentation in chloroplasts. II. Theoretical aspects , 1992 .

[87]  J. Fujii,et al.  Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. , 1987, The Journal of clinical investigation.

[88]  M. Caron,et al.  Chimeric alpha 2-,beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. , 1988, Science.

[89]  W. Lehmann,et al.  Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[90]  R. Heinrikson,et al.  Gene duplication in the evolution of the two complementing domains of gram-negative bacterial tetracycline efflux proteins. , 1990, Gene.

[91]  J. Szulmajster Protein folding , 1988, Bioscience reports.

[92]  J. Wess,et al.  Reconstitution of functional muscarinic receptors by co‐expression of amino‐ and carboxyl‐terminal receptor fragments , 1993, FEBS letters.

[93]  C. Deber,et al.  Erratum: A measure of helical propensity for amino acids in membrane environments , 1994, Nature Structural Biology.

[94]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[95]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[96]  K. Diederichs,et al.  The structure of porin from Paracoccus denitrificans at 3.1 Å resolution , 1997, FEBS letters.

[97]  D. E. Lovelace,et al.  Secondary structure of detergent-solubilized phospholamban, a phosphorylatable, oligomeric protein of cardiac sarcoplasmic reticulum. , 1989, Biochimica et biophysica acta.

[98]  T. Marti Refolding of Bacteriorhodopsin from Expressed Polypeptide Fragments* , 1998, The Journal of Biological Chemistry.

[99]  Wim G. J. Hol,et al.  The role of the α-helix dipole in protein function and structure , 1985 .

[100]  P. Booth,et al.  Intermediates in the assembly of bacteriorhodopsin investigated by time-resolved absorption spectroscopy. , 1997, European journal of biochemistry.

[101]  M. Schiffer,et al.  Structure of spheroidene in the photosynthetic reaction center from Y Rhodobacter sphaeroides , 1989, FEBS letters.

[102]  H. Michel,et al.  Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[103]  T. Tomizaki,et al.  Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A , 1995, Science.

[104]  C Menzel,et al.  Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. , 1999, Structure.

[105]  E. Bibi The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins. , 1998, Trends in biochemical sciences.

[106]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[107]  M. Tanner,et al.  Co-expressed Complementary Fragments of the Human Red Cell Anion Exchanger (Band 3, AE1) Generate Stilbene Disulfonate-sensitive Anion Transport (*) , 1995, The Journal of Biological Chemistry.

[108]  C. DeLisi,et al.  Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. , 1987, Journal of molecular biology.

[109]  D. Engelman,et al.  Reformation of crystalline purple membrane from purified bacteriorhodopsin fragments. , 1986, The EMBO journal.

[110]  R. H. Fillingame,et al.  Subunit organization and structure in the F0 sector of Escherichia coli F1F0 ATP synthase. , 1998, Biochimica et biophysica acta.

[111]  P. Booth Folding α helical membrane proteins; kinetic studies on bacteriorhodopsin , 1997 .

[112]  S. White,et al.  The preference of tryptophan for membrane interfaces. , 1998, Biochemistry.

[113]  James Barber,et al.  Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution , 1998, Nature.

[114]  Gunnar von Heijne,et al.  Decoding the Signals of Membrane Protein Sequences , 1994 .

[115]  A. Helenius,et al.  Protein oligomerization in the endoplasmic reticulum. , 1989, Annual review of cell biology.

[116]  Huilin Li,et al.  Molecular design of aquaporin-1 water channel as revealed by electron crystallography , 1997, Nature Structural Biology.

[117]  T. Tomizaki,et al.  The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å , 1996, Science.

[118]  D C Rees,et al.  Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. , 1998, Science.

[119]  M. Gerstein,et al.  Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. , 2000, Journal of molecular biology.

[120]  N. Unwin Acetylcholine receptor channel imaged in the open state , 1995, Nature.

[121]  Manfred Auer,et al.  Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution , 1999, Nature.

[122]  G. Schulz,et al.  Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. , 1997, Journal of molecular biology.

[123]  H. Kaback,et al.  In vivo expression of the lacY gene in two segments leads to functional lac permease. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[124]  D. Weiner,et al.  A point mutation in the neu oncogene mimics ligand induction of receptor aggregation , 1989, Nature.

[125]  David L. Stokes,et al.  Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution , 1998, Nature.

[126]  D. Oprian,et al.  A general method for mapping tertiary contacts between amino acid residues in membrane-embedded proteins. , 1995, Biochemistry.

[127]  D. Engelman,et al.  Tertiary structure of bacteriorhodopsin. Positions and orientations of helices A and B in the structural map determined by neutron diffraction. , 1989, Journal of molecular biology.

[128]  S. White Membrane Protein Structure , 1994, Methods in Physiology Series.

[129]  B Honig,et al.  Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models. , 1991, Biochemistry.

[130]  G. Fritzsch,et al.  Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactor interactions. , 1994, Structure.

[131]  D. Engelman,et al.  Sequence specificity in the dimerization of transmembrane alpha-helices. , 1992, Biochemistry.

[132]  M. Bloom,et al.  Mattress model of lipid-protein interactions in membranes. , 1984, Biophysical journal.

[133]  S. S. Lee,et al.  In vivo assembly of rhodopsin from expressed polypeptide fragments. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[134]  T. Tsukihara,et al.  Structures of membrane proteins determined at atomic resolution. , 1998, Journal of biochemistry.

[135]  J Deisenhofer,et al.  Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. , 1989, Journal of molecular biology.

[136]  G. Schulz,et al.  Structure of the outer membrane protein A transmembrane domain , 1998, Nature Structural Biology.

[137]  E Jakobsson,et al.  Computer simulation studies of biological membranes: progress, promise and pitfalls. , 1997, Trends in biochemical sciences.

[138]  Donald M. Engelman,et al.  [11] The identification of helical segments in the polypeptide chain of bacteriorhodopsin , 1982 .

[139]  Stephen H. White,et al.  Membrane protein structure: experimental approaches , 1994 .

[140]  P. Loll,et al.  The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1 , 1994, Nature.

[141]  P. Fromme,et al.  Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. , 1997, Journal of molecular biology.

[142]  F. Conti,et al.  Structural parts involved in activation and inactivation of the sodium channel , 1989, Nature.

[143]  Ming-Ming Zhou Phosphothreonine recognition comes into focus , 2000, Nature Structural Biology.

[144]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[145]  J. Deisenhofer,et al.  Crystal structure of the outer membrane active transporter FepA from Escherichia coli , 1999, Nature Structural Biology.

[146]  D. Engelman,et al.  Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching , 1996, Proteins.

[147]  L. C. Allen,et al.  A model for the hydrogen bond. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[148]  M. Hofnung,et al.  Homologies entre les protéines intégrales de membrane interne de systèmes de transport à protéine affine chez les entérobactéries , 1985 .

[149]  M. Tanner,et al.  Complementation studies with co-expressed fragments of human red cell band 3 (AE1): the assembly of the anion-transport domain in xenopus oocytes and a cell-free translation system. , 1998, The Biochemical journal.

[150]  M. Sansom,et al.  Interactions of alpha-helices with lipid bilayers: a review of simulation studies. , 1999, Biophysical chemistry.

[151]  V. Marchesi,et al.  Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[152]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[153]  J. Deisenhofer,et al.  Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II , 1988 .

[154]  J. Duneau,et al.  Insight into signal transduction: structural alterations in transmembrane helices probed by multi-1 ns molecular dynamics simulations. , 1997, Journal of biomolecular structure & dynamics.

[155]  M. Saraste,et al.  FEBS Lett , 2000 .

[156]  H. Michel,et al.  The Cytochrome c Oxidase from Paracoccus denitrificans Does Not Change the Metal Center Ligation upon Reduction* , 1999, The Journal of Biological Chemistry.

[157]  G. von Heijne,et al.  Three-dimensional model for the membrane domain of Escherichia coli leader peptidase based on disulfide mapping. , 1993, Biochemistry.

[158]  N. Unwin Nicotinic acetylcholine receptor at 9 A resolution. , 1993, Journal of molecular biology.

[159]  M. Dathe,et al.  Secondary Structure of Bacteriorhodopsin Fragments , 1998, The Journal of Biological Chemistry.

[160]  D. Engelman,et al.  Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process. , 1987, Journal of molecular biology.

[161]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[162]  S. Levy,et al.  Tet protein domains interact productively to mediate tetracycline resistance when present on separate polypeptides , 1991, Journal of bacteriology.

[163]  G. Schulz,et al.  The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution , 1991, FEBS letters.

[164]  C. Tribet,et al.  Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[165]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[166]  K. Schulten,et al.  The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. , 1996, Structure.

[167]  D S Goodsell,et al.  Inside a living cell. , 1991, Trends in biochemical sciences.

[168]  J. Marsh,et al.  Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. , 1993, Biophysical journal.

[169]  H. Michel,et al.  The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. , 1997, Structure.

[170]  J. Popot,et al.  On the distribution of amino acid residues in transmembrane alpha-helix bundles. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[171]  Andreas Engel,et al.  The three-dimensional structure of aquaporin-1 , 1997, Nature.

[172]  F. Crick,et al.  The packing of α‐helices: simple coiled‐coils , 1953 .

[173]  D Eisenberg,et al.  Hydrophobic organization of membrane proteins. , 1989, Science.

[174]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[175]  S M Prince,et al.  Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein pigment interactions. , 1997, Journal of molecular biology.

[176]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.

[177]  W. DeGrado,et al.  Synthetic amphiphilic peptide models for protein ion channels. , 1988, Science.

[178]  D. Engelman,et al.  Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[179]  J. Beckwith,et al.  Proper insertion of a complex membrane protein in the absence of its amino-terminal export signal. , 1991, The Journal of biological chemistry.

[180]  A. Johnson,et al.  The translocon: a dynamic gateway at the ER membrane. , 1999, Annual review of cell and developmental biology.

[181]  Y. Fujiyoshi,et al.  The structure of aquaporin-1 at 4.5-A resolution reveals short alpha-helices in the center of the monomer. , 1999, Journal of structural biology.

[182]  E. Pebay-Peyroula,et al.  X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. , 1997, Science.

[183]  M. Pisano,et al.  Tandem sequence repeats in transmembrane channel proteins. , 1991, Trends in biochemical sciences.

[184]  J. Popot,et al.  Folding and Assembly of Integral Membrane Proteins: An Introduction , 1994 .

[185]  B. Honig,et al.  Stability of "salt bridges" in membrane proteins. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[186]  S. O. Smith,et al.  Structural model of the phospholamban ion channel complex in phospholipid membranes. , 1995, Journal of molecular biology.

[187]  A. Kidera,et al.  The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution. , 1999, Journal of molecular biology.

[188]  T. Tomizaki,et al.  Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. , 1998, Science.

[189]  Y. Jan,et al.  Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel , 1991, Nature.

[190]  Organization and stability of a polytopic membrane protein: deletion analysis of the lactose permease of Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[191]  D. Brown,et al.  On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. , 1997, Biochemistry.

[192]  R. McElhaney,et al.  Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[193]  T. Jentsch,et al.  Reconstitution of Functional Voltage-gated Chloride Channels from Complementary Fragments of CLC-1* , 1997, The Journal of Biological Chemistry.

[194]  M. Saraste,et al.  New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. , 1995, Journal of molecular biology.

[195]  Sung-Hou Kim,et al.  Electron transfer by domain movement in cytochrome bc1 , 1998, Nature.

[196]  H. Michel,et al.  Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. , 1999, Journal of molecular biology.

[197]  K. Simons,et al.  Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. , 1997, Current opinion in cell biology.

[198]  T. Steitz,et al.  Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. , 1986, Annual review of biophysics and biophysical chemistry.

[199]  H. Peeters Protides of the Biological Fluids , 1958 .

[200]  R. Peters Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. , 1986, Biochimica et biophysica acta.

[201]  M. Saraste,et al.  Engineering membrane proteins. , 1995, Current opinion in biotechnology.

[202]  J. Popot,et al.  Integral membrane protein structure: transmembrane α-helices as autonomous folding domains , 1993, Current Opinion in Structural Biology.

[203]  M. Saier,et al.  Families and superfamilies of transport proteins common to prokaryotes and eukaryotes , 1991 .

[204]  H. Kaback,et al.  Helix packing in polytopic membrane proteins: the lactose permease of Escherichia coli. , 1997, Current opinion in structural biology.

[205]  T. Ohmori,et al.  Nucleotide sequence of the gene coding for four subunits of cytochrome c oxidase from the thermophilic bacterium PS3. , 1990, Journal of biochemistry.

[206]  N. Hynes,et al.  The biology of erbB-2/neu/HER-2 and its role in cancer. , 1994, Biochimica et biophysica acta.

[207]  J. Popot,et al.  On the microassembly of integral membrane proteins. , 1990, Annual review of biophysics and biophysical chemistry.

[208]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[209]  A Helenius,et al.  Setting the standards: quality control in the secretory pathway. , 1999, Science.

[210]  D. Engelman,et al.  X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawii. , 1970, Journal of molecular biology.

[211]  H. Kaback In and out and up and down with lac permease. , 1992, International review of cytology.

[212]  R. Reithmeier,et al.  Characterization and modeling of membrane proteins using sequence analysis. , 1995, Current opinion in structural biology.

[213]  J. Beckwith,et al.  Decoding signals for membrane protein assembly using alkaline phosphatase fusions. , 1991, The EMBO journal.

[214]  M. Saxton,et al.  Lateral diffusion in an archipelago. Distance dependence of the diffusion coefficient. , 1989, Biophysical journal.

[215]  William F. DeGrado,et al.  Asparagine-mediated self-association of a model transmembrane helix , 2000, Nature Structural Biology.

[216]  G. Hauska,et al.  Amino acid identities in the three redox center-carrying polypeptides of cytochromebc1/b6f complexes , 1988, Journal of bioenergetics and biomembranes.

[217]  James Barber,et al.  Revealing the structure of the oxygen-evolving core dimer of photosystem II by cryoelectron crystallography , 1999, Nature Structural Biology.

[218]  A. V. Kiselev,et al.  The structural basis of the functioning of bacteriorhodopsin: An overview , 1979, FEBS letters.

[219]  G. Schulz,et al.  Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution , 1994, Protein science : a publication of the Protein Society.

[220]  U. Stochaj,et al.  Construction and in vivo analysis of new split lactose permeases , 1994, FEBS letters.

[221]  T. Steitz,et al.  The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis , 1981, Cell.

[222]  T. Schwartz,et al.  Split-receptors in the tachykinin neurokinin-1 system--mutational analysis of intracellular loop 3. , 1998, European journal of biochemistry.

[223]  Richard H. Templer,et al.  Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer. , 1999 .

[224]  H Luecke,et al.  Structure of bacteriorhodopsin at 1.55 A resolution. , 1999, Journal of molecular biology.

[225]  Gunnar von Heijne,et al.  Principles of membrane protein assembly and structure. , 1996 .

[226]  J. Sturgis,et al.  Thermodynamics of membrane polypeptide oligomerization in light-harvesting complexes and associated structural changes. , 1994, Journal of molecular biology.

[227]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[228]  G. Schulz,et al.  Structure and function of a squalene cyclase. , 1997, Science.

[229]  D. Engelman,et al.  A method for determining transmembrane helix association and orientation in detergent micelles using small angle x-ray scattering. , 1999, Biophysical journal.

[230]  M H Saier,et al.  Evolution of the MIP family of integral membrane transport proteins , 1991, Molecular microbiology.

[231]  D. Engelman,et al.  Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. , 1983, Journal of molecular biology.

[232]  S. Chervitz,et al.  The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. , 1997, Annual review of cell and developmental biology.

[233]  H. Kaback,et al.  Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains. , 1994, Biochemistry.

[234]  J Deisenhofer,et al.  X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. , 1984, Journal of molecular biology.

[235]  J. Dilger,et al.  A critical comparison of electrical and optical methods for bilayer thickness determination , 1982 .

[236]  M. Tanner,et al.  Complementation Studies with Co-expressed Fragments of the Human Red Cell Anion Transporter (Band 3; AE1) , 1997, The Journal of Biological Chemistry.

[237]  B. Bormann,et al.  Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor , 1996, Nature Structural Biology.

[238]  D. Oesterhelt,et al.  Structure and hydration of the M-state of the bacteriorhodopsin mutant D96N studied by neutron diffraction. , 1998, Journal of molecular biology.

[239]  Accommodation of amino acid insertions in an alpha-helix of T4 lysozyme. Structural and thermodynamic analysis. , 1994, Journal of molecular biology.

[240]  D. Marsh Lateral pressure in membranes. , 1996, Biochimica et biophysica acta.

[241]  R. Kurumbail,et al.  Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents , 1996, Nature.

[242]  Luc Moulinier,et al.  Transmembrane Signaling across the Ligand-Gated FhuA Receptor Crystal Structures of Free and Ferrichrome-Bound States Reveal Allosteric Changes , 1998, Cell.

[243]  H. Kaback,et al.  From membrane to molecule to the third amino acid from the left with a membrane transport protein , 1997, Quarterly Reviews of Biophysics.

[244]  S. Oiki,et al.  M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[245]  H. Kaback,et al.  Functional complementation of internal deletion mutants in the lactose permease of Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.