More Efficient Tests Robust to Heteroskedasticity of Unknown Form

ABSTRACT In the presence of heteroskedasticity of unknown form, the Ordinary Least Squares parameter estimator becomes inefficient, and its covariance matrix estimator inconsistent. Eicker (1963) and White (1980) were the first to propose a robust consistent covariance matrix estimator, that permits asymptotically correct inference. This estimator is widely used in practice. Cragg (1983) proposed a more efficient estimator, but concluded that tests basd on it are unreliable. Thus, this last estimator has not been used in practice. This article is concerned with finite sample properties of tests robust to heteroskedasticity of unknown form. Our results suggest that reliable and more efficient tests can be obtained with the Cragg estimators in small samples.

[1]  J. MacKinnon Bootstrap Inference in Econometrics , 2002 .

[2]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[3]  Emmanuel Flachaire A better way to bootstrap pairs , 1999 .

[4]  Robert Tibshirani,et al.  Correction: Discussion of "Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis" by C. F. J. Wu , 1988 .

[5]  James G. MacKinnon,et al.  Heteroskedastcity-robust tests in regressions directions , 1985 .

[6]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[7]  J. Fox Bootstrapping Regression Models , 2002 .

[8]  J. G. Cragg MORE EFFICIENT ESTIMATION IN THE PRESENCE OF HETEROSCEDASTICITY OF UNKNOWN FORM , 1983 .

[9]  Emmanuel Flachaire,et al.  Bootstrapping heteroskedasticity consistent covariance matrix estimator , 2002, Comput. Stat..

[10]  J. MacKinnon,et al.  Bootstrap tests: how many bootstraps? , 2000 .

[11]  Emmanuel Flachaire,et al.  The wild bootstrap, tamed at last , 2001 .

[12]  E. Flachaire Propriétés en échantillon fini des tests robustes à l'hétéroscédasticité de forme inconnue , 2005 .

[13]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[14]  Lutz Kilian,et al.  Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form , 2002, SSRN Electronic Journal.

[15]  F. Eicker Asymptotic Normality and Consistency of the Least Squares Estimators for Families of Linear Regressions , 1963 .

[16]  H. White,et al.  Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties☆ , 1985 .

[17]  J. S. Long,et al.  Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model , 2000 .

[18]  James G. MacKinnon,et al.  TESTS FOR MODEL SPECIFICATION IN THE PRESENCE OF ALTERNATIVE HYPOTHESES Some Further Results , 1983 .

[19]  Leslie Godfrey,et al.  Controlling the finite sample significance levels of heteroskedasticity-robust tests of several linear restrictions on regression coefficients , 2004 .

[20]  James G. MacKinnon,et al.  Improving the Reliability of Bootstrap Condence Intervals , 2001 .

[21]  J. MacKinnon,et al.  Heteroskedasticity-Robust Tests in Regression Directions , 1985 .

[22]  A. Chesher,et al.  The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator , 1987 .

[23]  John Huizinga,et al.  Two-Step Two-Stage Least Squares Estimation in Models with Rational Expectations , 1983 .

[24]  L. Hansen A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators , 1985 .

[25]  J. Horowitz Bootstrap Methods in Econometrics: Theory and Numerical Performance , 1995 .

[26]  Emmanuel Flachaire,et al.  Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap , 2005, Comput. Stat. Data Anal..

[27]  Rudolf Beran Discussion: Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[28]  N. Weber,et al.  Discussion: Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[29]  Jan F. Kiviet,et al.  How to implement the bootstrap in static or stable dynamic regression models , 2002 .

[30]  Russell Davidson,et al.  Bootstrap Confidence Intervals Based on Inverting Hypothesis Tests , 2000 .