Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing
暂无分享,去创建一个
[1] L. Kantorovich. On a Problem of Monge , 2006 .
[2] L. Kantorovich. On the Translocation of Masses , 2006 .
[3] Jonathan C. Mattingly,et al. The Small Scales of the Stochastic Navier–Stokes Equations Under Rough Forcing , 2004, math-ph/0408060.
[4] Jonathan C. Mattingly,et al. Malliavin calculus for the stochastic 2D Navier—Stokes equation , 2004, math/0407215.
[5] Sergei Kuksin,et al. The Eulerian Limit for 2D Statistical Hydrodynamics , 2004 .
[6] Boris Rozovskii,et al. Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..
[7] Jonathan C. Mattingly. On recent progress for the stochastic Navier Stokes equations , 2004, math/0409194.
[8] R. Rosa. Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence , 2002 .
[9] Jonathan C. Mattingly. Exponential Convergence for the Stochastically Forced Navier-Stokes Equations and Other Partially Dissipative Dynamics , 2002 .
[10] Jonathan C. Mattingly. The Dissipative Scale of the Stochastics Navier–Stokes Equation: Regularization and Analyticity , 2002 .
[11] C. Foias,et al. Statistical Estimates for the Navier–Stokes Equations and the Kraichnan Theory of 2-D Fully Developed Turbulence , 2002 .
[12] L. Young,et al. Ergodic Theory of Infinite Dimensional Systems¶with Applications to Dissipative Parabolic PDEs , 2002 .
[13] J. Bricmont,et al. Ergodicity of the 2D Navier--Stokes Equations¶with Random Forcing , 2001 .
[14] Jonathan C. Mattingly,et al. Ergodicity for the Navier‐Stokes equation with degenerate random forcing: Finite‐dimensional approximation , 2001 .
[15] Weinan E,et al. Gibbsian Dynamics and Ergodicity¶for the Stochastically Forced Navier–Stokes Equation , 2001 .
[16] Martin Hairer,et al. Exponential mixing properties of stochastic PDEs through asymptotic coupling , 2001, math/0109115.
[17] Armen Shirikyan,et al. A Coupling Approach¶to Randomly Forced Nonlinear PDE's. I , 2001 .
[18] J. Eckmann,et al. Uniqueness of the Invariant Measure¶for a Stochastic PDE Driven by Degenerate Noise , 2000, nlin/0009028.
[19] J. Bricmont,et al. Exponential Mixing of the 2D Stochastic Navier-Stokes Dynamics , 2000 .
[20] A. Shirikyan,et al. Stochastic Dissipative PDE's and Gibbs Measures , 2000 .
[21] J.,et al. Ergodicity of the 2 D Navier-Stokes Equations with Random Forcing , 2000 .
[22] Jonathan C. Mattingly. Ergodicity of 2D Navier–Stokes Equations with¶Random Forcing and Large Viscosity , 1999 .
[23] Sandra Cfrrai. Ergodicity for stochastic reaction-diffusion systems with polynomial coefficients , 1999 .
[24] Benedetta Ferrario,et al. Ergodic results for stochastic navier-stokes equation , 1997 .
[25] R. Khasminskii,et al. Stationary solutions of nonlinear stochastic evolution equations , 1997 .
[26] J. Zabczyk,et al. Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .
[27] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov , 1996 .
[28] Franco Flandoli,et al. Ergodicity of the 2-D Navier-Stokes equation under random perturbations , 1995 .
[29] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[30] G. Constantain,et al. Probability Metrics and the Stability of Stochastic Models , 1995 .
[31] Franco Flandoli,et al. Dissipativity and invariant measures for stochastic Navier-Stokes equations , 1994 .
[32] K. Elworthy,et al. Formulae for the Derivatives of Heat Semigroups , 1994, 1911.10971.
[33] Hantaek Bae. Navier-Stokes equations , 1992 .
[34] J. Freeman. Probability Metrics and the Stability of Stochastic Models , 1991 .
[35] Michael Beals,et al. JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES , 1991 .
[36] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[37] A. Cruzeiro. Solutions ET mesures invariantes pour des equations d'evolution Stochastiques du type Navier-Stokes , 1987 .
[38] Denis R. Bell. The Malliavin Calculus , 1987 .
[39] L. Hörmander,et al. The Analysis of Linear Partial Differential Operators IV , 1985 .
[40] R. Melrose,et al. JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES , 1981 .
[41] R. Temam. Navier-Stokes Equations , 1977 .
[42] E. Anderson. Linear Programming In Infinite Dimensional Spaces , 1970 .
[43] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[44] C. Foiaș,et al. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .
[45] G. Beck,et al. Actualités scientifiques et industrielles , 1933 .