An Iterative Local Updating Ensemble Smoother for Estimation and Uncertainty Assessment of Hydrologic Model Parameters With Multimodal Distributions

Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the clusters with ES separately. However, this strategy may not be very efficient when the dimension of parameter space is high or the number of modes is large. Alternatively, we propose in this paper a very simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to explore multimodal distributions of model parameters in nonlinear hydrologic systems. The ILUES algorithm works by updating local ensembles of each sample with ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurements multiple times. Numerical cases involving nonlinearity and multimodality are tested to illustrate the performance of the proposed method. It is shown that overall the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists.

[1]  Laura Dovera,et al.  Multimodal ensemble Kalman filtering using Gaussian mixture models , 2011 .

[2]  Keston W. Smith Cluster ensemble Kalman filter , 2007 .

[3]  D. Oliver,et al.  Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother , 2011, Mathematical Geosciences.

[4]  Biao Huang,et al.  Gaussian Mixture Model-Based Ensemble Kalman Filtering for State and Parameter Estimation for a PMMA Process , 2016 .

[5]  Liang Xue,et al.  A multimodel data assimilation framework via the ensemble Kalman filter , 2014 .

[6]  Mary F. Wheeler,et al.  Clustered iterative stochastic ensemble method for multi-modal calibration of subsurface flow models , 2013 .

[7]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[8]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[9]  Albert J. Valocchi,et al.  A Bayesian approach to improved calibration and prediction of groundwater models with structural error , 2015 .

[10]  Liangping Li,et al.  An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering , 2011 .

[11]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[12]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[13]  Yan Chen,et al.  Data assimilation for transient flow in geologic formations via ensemble Kalman filter , 2006 .

[14]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[15]  Arlen W. Harbaugh,et al.  MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process , 2000 .

[16]  Chris Snyder,et al.  Toward a nonlinear ensemble filter for high‐dimensional systems , 2003 .

[17]  G. Evensen,et al.  Sequential Data Assimilation Techniques in Oceanography , 2003 .

[18]  Dongxiao Zhang,et al.  An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions , 2004 .

[19]  Dean S. Oliver,et al.  THE ENSEMBLE KALMAN FILTER IN RESERVOIR ENGINEERING-A REVIEW , 2009 .

[20]  Guang Lin,et al.  Efficient evaluation of small failure probability in high‐dimensional groundwater contaminant transport modeling via a two‐stage Monte Carlo method , 2017 .

[21]  Ming Ye,et al.  An adaptive sparse‐grid high‐order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling , 2013 .

[22]  Domenico Baù,et al.  Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution , 2010 .

[23]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[24]  Jasper A. Vrugt,et al.  Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation , 2016, Environ. Model. Softw..

[25]  Wolfgang Nowak,et al.  Parameter Estimation by Ensemble Kalman Filters with Transformed Data , 2010 .

[26]  Alexander Y. Sun,et al.  Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques , 2009 .

[27]  Dongxiao Zhang,et al.  A sparse grid based Bayesian method for contaminant source identification , 2012 .

[28]  Jonathan D. Beezley,et al.  An Ensemble Kalman-Particle Predictor-Corrector Filter for Non-Gaussian Data Assimilation , 2008, ICCS.

[29]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[30]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[31]  Alain Dassargues,et al.  Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging , 2008 .

[32]  A. Reynolds,et al.  History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations , 2012, Computational Geosciences.

[33]  Haibin Chang,et al.  History matching of facies distribution with the EnKF and level set parameterization , 2010, J. Comput. Phys..

[34]  Christian L. Keppenne,et al.  Assimilation of temperature into an isopycnal ocean general circulation model using a parallel ensemble Kalman filter , 2003 .

[35]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[36]  Fuqing Zhang,et al.  Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation , 2016 .

[37]  Lingzao Zeng,et al.  An adaptive Gaussian process‐based method for efficient Bayesian experimental design in groundwater contaminant source identification problems , 2016 .

[38]  G. Evensen,et al.  Data assimilation and inverse methods in terms of a probabilistic formulation , 1996 .

[39]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[40]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[41]  Ming Ye,et al.  Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff , 2003 .

[42]  Cajo J. F. ter Braak,et al.  Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .

[43]  Jan-Arild Skjervheim,et al.  An Ensemble Smoother for Assisted History Matching , 2011, ANSS 2011.

[44]  Bing Li,et al.  Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice , 2016, J. Comput. Phys..

[45]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[46]  Liangping Li,et al.  Inverse methods in hydrogeology: Evolution and recent trends , 2014 .

[47]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[48]  Dean S. Oliver,et al.  An Iterative Ensemble Kalman Filter for Multiphase Fluid Flow Data Assimilation , 2007 .

[49]  Geir Nævdal,et al.  An Iterative Ensemble Kalman Filter , 2011, IEEE Transactions on Automatic Control.

[50]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[51]  Yalchin Efendiev,et al.  An efficient two‐stage Markov chain Monte Carlo method for dynamic data integration , 2005 .

[52]  Albert C. Reynolds,et al.  Ensemble smoother with multiple data assimilation , 2013, Comput. Geosci..

[53]  Behnam Jafarpour,et al.  Estimating Channelized-Reservoir Permeabilities With the Ensemble Kalman Filter: The Importance of Ensemble Design , 2009 .

[54]  R. Moore The probability-distributed principle and runoff production at point and basin scales , 1985 .

[55]  Domenico Baù,et al.  Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation , 2012 .

[56]  Cheng Chen,et al.  Efficient Bayesian experimental design for contaminant source identification , 2015, Water Resources Research.