Effect of acceptor and donor doping on the state of protons in block-layered structures based on BaLaInO4

[1]  I. Animitsa,et al.  Improvement of oxygen-ionic and protonic conductivity of BaLaInO4 through Ti doping , 2020, Ionics.

[2]  I. Animitsa,et al.  Electrical properties of new protonic conductors Ba1 + хLa1–хInO4–0.5х with Ruddlesden-Popper structure , 2020, Journal of Solid State Electrochemistry.

[3]  I. Animitsa,et al.  Protonic transport in the new phases BaLaIn0.9M0.1O4.05 (M=Ti, Zr) with Ruddlesden-Popper structure , 2020 .

[4]  M. Koç,et al.  Integration of Solid Oxide Fuel Cells into oil and gas operations: needs, opportunities, and challenges , 2020, Journal of Cleaner Production.

[5]  P. Colomban Proton conductors and their applications: A tentative historical overview of the early researches , 2019, Solid State Ionics.

[6]  I. Animitsa,et al.  Fluorine and chlorine doping in oxygen-deficient perovskites: A strategy for improving chemical stability , 2019, Comptes Rendus Chimie.

[7]  I. Animitsa,et al.  Incorporation and Conduction of Protons in Ca, Sr, Ba-Doped BaLaInO4 with Ruddlesden-Popper Structure , 2019, Materials.

[8]  J. Alonso,et al.  Dual Oxygen Defects in Layered La1.2Sr0.8−xBaxInO4+δ (x = 0.2, 0.3) Oxide-Ion Conductors: A Neutron Diffraction Study , 2019, Materials.

[9]  Hongxing Xiao,et al.  Investigation of the mechanical properties of ZrO2-doped UO2 ceramic pellets by indentation technique , 2018, Journal of Nuclear Materials.

[10]  I. Animitsa,et al.  The short-range structure and hydration process of fluorine-substituted double perovskites based on barium-calcium niobate Ba 2 CaNbO 5.5 , 2018, Journal of Physics and Chemistry of Solids.

[11]  I. Animitsa,et al.  Аnionic doping (F−, Cl−) as the method for improving transport properties of proton-conducting perovskites based on Ba2CaNbO5.5 , 2018 .

[12]  I. Animitsa,et al.  The influence of anionic heterovalent doping on transport properties and chemical stability of F-, Cl-doped brownmillerite Ba2In2O5 , 2018 .

[13]  J. Shim Ceramics breakthrough , 2018 .

[14]  K. Fujii,et al.  Crystal Structure and Oxide-Ion Conductivity of Ba1+xNd1−xInO4−x/2 , 2017 .

[15]  I. Animitsa,et al.  Recent activity in the development of proton-conducting oxides for high-temperature applications , 2016 .

[16]  T. Sakai,et al.  Oxide ion conductivity in doped NdBaInO4 , 2016 .

[17]  F. Lu,et al.  Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors , 2016 .

[18]  J. Alonso,et al.  Introduction of interstitial oxygen atoms in the layered perovskite LaSrIn1 − xBxO4 + δ system (B=Zr, Ti) , 2015 .

[19]  J. Alonso,et al.  Low activation energies for interstitial oxygen conduction in the layered perovskites La1+xSr1−xInO4+δ , 2015 .

[20]  I. Animitsa,et al.  Protonic transport in oxyfluorides Ba2InO3F and Ba3In2O5F2 with Ruddlesden–Popper structure , 2015 .

[21]  K. Fujii,et al.  Improved oxide-ion conductivity of NdBaInO4 by Sr doping , 2015 .

[22]  Xinyu Li,et al.  Conductivity of New Electrolyte Material Pr1-xM1+xInO4(M=Ba,Sr) with Related Perovskite Structure for Solid Oxide Fuel Cells , 2013 .

[23]  K. Kravchyk,et al.  Rare earth effect on conductivity and stability properties of doped barium indates as potential proton-conducting fuel cell electrolytes , 2012 .

[24]  Lei Bi,et al.  Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 °C with Chemically Stable Proton‐Conducting Electrolytes , 2012, Advanced materials.

[25]  M. Belmonte,et al.  Advanced Ceramic Materials for High Temperature Applications , 2006 .

[26]  Y. Yamamura,et al.  Thermal and electrical properties of Ba2In2O5 substituted for In-site by rare earth elements , 2006 .

[27]  A. Matic,et al.  Vibrational properties of proton conducting double perovskites , 2005 .

[28]  I. Animitsa,et al.  Proton and oxygen-ion conductivity of Ba4Ca2Nb2O11 , 2003 .

[29]  H. Yamamura,et al.  Oxide-ion conductivity of the perovskite-type solid-solution system, (Ba1−x−ySrxLay)2In2O5+y , 2002 .

[30]  I. Animitsa,et al.  Double perovskites with oxygen structural vacancies: Raman spectra, conductivity and water uptake , 2001 .

[31]  Kevin S. Knight,et al.  Structural phase transitions, oxygen vacancy ordering and protonation in doped BaCeO3: results from time-of-flight neutron powder diffraction investigations , 2001 .

[32]  J. Gale,et al.  Hop, skip or jump? Proton transport in the CaZrO3 perovskite oxide , 2001 .

[33]  S. Haile,et al.  Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions , 1999 .

[34]  C. Fisher,et al.  Defect, protons and conductivity in brownmillerite-structured Ba2In2O5 , 1999 .

[35]  P. Colomban Latest Developments in Proton Conductors , 1999 .

[36]  J. Maier,et al.  On proton transport in perovskite‐type oxides and plastic hydroxides , 1998 .

[37]  T. Schober,et al.  Phase transition in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300°C , 1997 .

[38]  C. Karmonik,et al.  Proton Diffusion in Strontium Cerate Ceramics studied by Quasielastic Neutron Scattering and Impedance Spectroscopy , 1995 .

[39]  C. Karmonik,et al.  Quasielastic neutron scattering study of proton diffusion in SrCe0.95Yb0.05H0.02O2.985 , 1995 .

[40]  P. Colomban,et al.  Infrared study of H+(H2O)nβ″ alumina , 1979 .