Asymptotics in quantum statistics

Observations or measurements taken of a quantum system (a small number of fundamental particles) are inherently random. If the state of the system depends on unknown parameters, then the distribution of the outcome depends on these parameters too, and statistical inference problems result. Often one has a choice of what measurement to take, corresponding to different experimental set-ups or settings of measurement apparatus. This leads to a design problem?which measurement is best for a given statistical problem. This paper gives an introduction to this field in the most simple of settings, that of estimating the state of a spin-half particle given ? independent copies of the particle. We show how in some cases asymptotically optimal measurements can be constructed. Other cases present interesting open problems, connected to the fact that for some models, quantum Fisher information is in some sense non-additive. In physical terms, we have non-locality without entanglement.

[1]  R. D. Gill Lecture notes on quantum statistics , 2000 .

[2]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[3]  Philippe Biane,et al.  Calcul stochastique non-commutatif , 1995 .

[4]  A. Holevo Bounds for generalized uncertainty of the shift parameter , 1983 .

[5]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[6]  W. Wootters,et al.  Optimal detection of quantum information. , 1991, Physical review letters.

[7]  Teleportation into Quantum Statistics , 2004, math/0405572.

[8]  R. Gill Critique of `Elements of Quantum Probability' , 1998 .

[9]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[10]  P. Pascual,et al.  OPTIMAL MINIMAL MEASUREMENTS OF MIXED STATES , 1999 .

[11]  Tim Maudlin,et al.  Quantum non-locality and relativity , 1994 .

[12]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[13]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[14]  H. S. Allen The Quantum Theory , 1928, Nature.

[15]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[16]  Richard D. Gill,et al.  An example of non-attainability of expected quantum information , 1998 .

[17]  C. W. Helstrom,et al.  Minimum mean-squared error of estimates in quantum statistics , 1967 .

[18]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[19]  P. Meyer Elements de probabilites quantiques , 1989 .

[20]  Ian Percival,et al.  Quantum State Diffusion , 1998 .

[21]  B. Kümmerer,et al.  Elements of quantum probability , 1996 .

[22]  William G. Faris Shadows of the Mind: A Search for the Missing Science of Consciousness , 1997 .

[23]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[24]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[25]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[26]  Dorje C. Brody,et al.  Statistical geometry in quantum mechanics , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  E. Davies,et al.  PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .

[28]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.

[29]  R. L. Stratonovich The quantum generalization of optimal statistical estimation and hypothesis testing , 1975 .