Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight
暂无分享,去创建一个
[1] B. Keister,et al. Multidimensional Quadrature Algorithms at Higher Degree and/or Dimension , 1996 .
[2] Ronald Cools,et al. An imbedded family of cubature formulae for n -dimensional product regions , 1994 .
[3] Petros Dellaportas,et al. Positive embedded integration in Bayesian analysis , 1991 .
[4] G. Bertsch,et al. The Nuclear Shell Model , 1990 .
[5] Alan Genz,et al. Fully symmetric interpolatory rules for multiple integrals , 1986 .
[6] H. Engels,et al. Numerical Quadrature and Cubature , 1980 .
[7] N. Isgur,et al. P Wave Baryons in the Quark Model , 1978 .
[8] Giovanni Monegato,et al. Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights , 1978 .
[9] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[10] Atomic and Molecular Orbital Theory , 1970 .
[11] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[12] P. Davis,et al. Methods of Numerical Integration , 1985 .
[13] J. McNamee,et al. Construction of fully symmetric numerical integration formulas of fully symmetric numerical integration formulas , 1967 .
[14] A. Stroud,et al. Nodes and Weights of Quadrature Formulas , 1965 .