Depth-resolved magnetization reversal in nanoporous perpendicular anisotropy multilayers

We have used polarized neutron reflectometry to study the field-dependent magnetizations of Co/Pt mulitlayers patterned via deposition onto nanoporous alumina hosts with varying pore aspect ratio. Despite the porosity and lack of long-range order, robust spin-dependent reflectivities are observed, allowing us to distinguish the magnetization of the surface multilayer from that of material in the pores. We find that as the pores become wider and shallower, the surface Co/Pt multilayers have progressively smaller high field magnetization and exhibit softer magnetic reversal—consistent with increased magnetic disorder and a reduction of the perpendicular anisotropy near the pore rims. These results reveal complexities of magnetic order in nanoporous heterostructures, and help pave the way for depth-resolved studies of complex magnetic heterostructures grown on prepatterned substrates.

[1]  J. L. Blue,et al.  Micromagnetic structure of domains in Co/Pt multilayers. I. Investigations of wall structure , 1993 .

[2]  K. Temst,et al.  Off-specular polarized neutron reflectometry from periodic arrays of lithographically structured Co dots , 2003 .

[3]  J. Barnard,et al.  Nanostructured magnetic networks , 1996 .

[4]  C. Lai,et al.  Co/Pt perpendicular antidot arrays with engineered feature size and magnetic properties fabricated on anodic aluminum oxide templates , 2010 .

[5]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[6]  Johannes Boneberg,et al.  Magnetic multilayers on nanospheres , 2005, Nature materials.

[7]  S. Bader Colloquium: Opportunities in nanomagnetism , 2006 .

[8]  O. Hellwig,et al.  Suppression of magnetic trench material in bit patterned media fabricated by blanket deposition onto prepatterned substrates , 2008 .

[9]  J. Katine,et al.  Current-induced magnetization reversal in nanopillars with perpendicular anisotropy , 2006 .

[10]  F. Heinrich,et al.  Phase-sensitive specular neutron reflectometry for imaging the nanometer scale composition depth profile of thin-film materials , 2012 .

[11]  J. Borchers,et al.  Vertically graded anisotropy in Co/Pd multilayers , 2009, 0912.0256.

[12]  C. Majkrzak Neutron scattering studies of magnetic thin films and multilayers , 1996 .

[13]  Mannan Ali,et al.  Controlled magnetic roughness in a multilayer that has been patterned using a nanosphere array , 2006 .

[14]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[15]  T. Russell,et al.  Tailoring exchange bias with magnetic nanostructures , 2001 .

[16]  Magnetic domain formation within patterned NiFe/Cu/Co ellipses , 2009 .

[17]  O. Konovalov,et al.  Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity , 2012, Nanotechnology.

[18]  Mathias Kläui,et al.  Magnetization reversal in cobalt antidot arrays , 2006 .

[19]  C. Lai,et al.  Controlling magnetization reversal in Co/Pt nanostructures with perpendicular anisotropy , 2009, 0901.4562.

[20]  Xinfa Chen,et al.  Single-particle blocking and collective magnetic states in discontinuous CoFe/Al2O3 multilayers , 2010 .

[21]  Kai Liu,et al.  Magnetic and magneto-transport properties of novel nanostructured networks , 1998 .

[22]  Brian C. Berry,et al.  Surface morphology diagram for cylinder-forming block copolymer thin films. , 2008, ACS nano.