Experimental evaluation and performance enhancement prediction of desiccant assisted separate sensible and latent cooling air-conditioning system

Abstract CO 2 and R410A desiccant wheel (DW)-assisted separate sensible and latent cooling (SSLC) air-conditioning systems were tested under the AHRI standard. At a 50 °C regeneration temperature, the coefficient of performance (COP) of the vapor compression cycles improved only 7% from the respective baseline systems for both refrigerants. This paper proposed the idea of applying divided condensers (or gas coolers) to the R410A (or CO 2 ) SSLC system to enhance its performance. It was found that the application of divided heat exchangers to the SSLC system provided sufficiently hot airflow for regenerating the desiccant wheel at both a reduced high side pressure (from 10.4 MPa to 9.7 MPa for CO 2 , from 3.46 MPa to 3.45 MPa for R410A) and a reduced discharge temperature from the condenser (gas cooler) (4 K lower for both refrigerants). The COP improvement is 36% and 61% to R410A and CO 2 baseline systems, respectively.