Human generalization of internal representations through prototype learning with goal-directed attention

[1]  Andrew M. Saxe,et al.  Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals , 2022, PLoS Comput. Biol..

[2]  Andrew M. Saxe,et al.  Orthogonal representations for robust context-dependent task performance in brains and neural networks , 2022, Neuron.

[3]  Takuya Ito,et al.  Multi-task representations in human cortex transform along a sensory-to-motor hierarchy , 2021, bioRxiv.

[4]  T. Yarkoni,et al.  Bambi: A Simple Interface for Fitting Bayesian Linear Models in Python , 2020, J. Stat. Softw..

[5]  Máté Lengyel,et al.  Contextual inference underlies the learning of sensorimotor repertoires , 2020, Nature.

[6]  Silvia Bernardi,et al.  The Geometry of Abstraction in the Hippocampus and Prefrontal Cortex , 2020, Cell.

[7]  L. Machado,et al.  A meta-analysis on verbal working memory in children and adolescents with ADHD , 2020, The Clinical neuropsychologist.

[8]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[9]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[10]  Osvaldo A. Martin,et al.  ArviZ a unified library for exploratory analysis of Bayesian models in Python , 2019, J. Open Source Softw..

[11]  Christopher Summerfield,et al.  Comparing continual task learning in minds and machines , 2018, Proceedings of the National Academy of Sciences.

[12]  Amy L. Cochran,et al.  A flexible and generalizable model of online latent-state learning , 2018, bioRxiv.

[13]  H. Woodrow,et al.  : A Review of the , 2018 .

[14]  Stefan Wermter,et al.  Continual Lifelong Learning with Neural Networks: A Review , 2018, Neural Networks.

[15]  G. Rees,et al.  Adults with autism over-estimate the volatility of the sensory environment , 2017, Nature Neuroscience.

[16]  Bradley C. Love,et al.  Medial prefrontal cortex compresses concept representations through learning , 2017, bioRxiv.

[17]  David Badre,et al.  Working Memory Load Strengthens Reward Prediction Errors , 2017, The Journal of Neuroscience.

[18]  Michael L. Mack,et al.  Dynamic updating of hippocampal object representations reflects new conceptual knowledge , 2016, Proceedings of the National Academy of Sciences.

[19]  A. Acquisti,et al.  Beyond the Turk: Alternative Platforms for Crowdsourcing Behavioral Research , 2016 .

[20]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[21]  Stephen V Faraone,et al.  An update on the comorbidity of ADHD and ASD: a focus on clinical management , 2016, Expert review of neurotherapeutics.

[22]  Yael Niv,et al.  The computational nature of memory modification , 2016, bioRxiv.

[23]  Janet K. Kern,et al.  Are ASD and ADHD a Continuum? A Comparison of Pathophysiological Similarities Between the Disorders , 2015, Journal of attention disorders.

[24]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[25]  Robert C. Wilson,et al.  Reinforcement Learning in Multidimensional Environments Relies on Attention Mechanisms , 2015, The Journal of Neuroscience.

[26]  Matthew W. Mosconi,et al.  Cognitive Set Shifting Deficits and Their Relationship to Repetitive Behaviors in Autism Spectrum Disorder , 2015, Journal of autism and developmental disorders.

[27]  Anne G E Collins,et al.  Working Memory Contributions to Reinforcement Learning Impairments in Schizophrenia , 2014, The Journal of Neuroscience.

[28]  F. Gregory Ashby,et al.  Multidimensional Models of Perception and Cognition , 2014 .

[29]  Krista Casler,et al.  Separate but equal? A comparison of participants and data gathered via Amazon's MTurk, social media, and face-to-face behavioral testing , 2013, Comput. Hum. Behav..

[30]  Stefano Fusi,et al.  The Sparseness of Mixed Selectivity Neurons Controls the Generalization–Discrimination Trade-Off , 2013, The Journal of Neuroscience.

[31]  Y. Niv,et al.  Exploring a latent cause theory of classical conditioning , 2012, Learning & Behavior.

[32]  Michael Siniatchkin,et al.  ADHD and autism: differential diagnosis or overlapping traits? A selective review , 2012, ADHD Attention Deficit and Hyperactivity Disorders.

[33]  Anne G E Collins,et al.  How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis , 2012, The European journal of neuroscience.

[34]  E. Koechlin,et al.  Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision-Making , 2012, PLoS biology.

[35]  L. Itti,et al.  Mechanisms of top-down attention , 2011, Trends in Neurosciences.

[36]  Nicholas A. Steinmetz,et al.  Top-down control of visual attention , 2010, Current Opinion in Neurobiology.

[37]  Leslie G. Ungerleider,et al.  What does distractibility in ADHD reveal about mechanisms for top-down attentional control? , 2010, Cognition.

[38]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[39]  Shalabh Bhatnagar,et al.  Natural actor-critic algorithms , 2009, Autom..

[40]  Jadin C. Jackson,et al.  Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. , 2007, Psychological review.

[41]  D. Medin,et al.  SUSTAIN: a network model of category learning. , 2004, Psychological review.

[42]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[43]  J. Kruschke Toward a unified model of attention in associative learning , 2001 .

[44]  J. D. Smith,et al.  Prototypes in category learning: the effects of category size, category structure, and stimulus complexity. , 2001, Journal of experimental psychology. Learning, memory, and cognition.

[45]  John K. Kruschke,et al.  A model of probabilistic category learning. , 1999, Journal of experimental psychology. Learning, memory, and cognition.

[46]  R. French Catastrophic forgetting in connectionist networks , 1999, Trends in Cognitive Sciences.

[47]  J. D. Smith,et al.  Prototypes in the Mist: The Early Epochs of Category Learning , 1998 .

[48]  J. P. Minda,et al.  Straight talk about linear separability , 1997 .

[49]  I. J. Myung,et al.  Maximum entropy interpretation of decision bound and context models of categorization , 1994 .

[50]  W. T. Maddox,et al.  Relations between prototype, exemplar, and decision bound models of categorization , 1993 .

[51]  R. Nosofsky Tests of an exemplar model for relating perceptual classification and recognition memory. , 1991, Journal of experimental psychology. Human perception and performance.

[52]  W. Estes Array models for category learning , 1986, Cognitive Psychology.

[53]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[54]  Douglas L. Medin,et al.  Context theory of classification learning. , 1978 .

[55]  Stephen K. Reed,et al.  Perceptual vs conceptual categorization , 1973, Memory & cognition.

[56]  Stephen K. Reed,et al.  Pattern recognition and categorization , 1972 .

[57]  John K. Kruschke,et al.  Learning of rules that have high-frequency exceptions: New empirical data and a hybrid connectionist model , 2019, Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society.

[58]  D. Blei,et al.  Context, learning, and extinction. , 2010, Psychological review.

[59]  David L. Faigman,et al.  Human category learning. , 2005, Annual review of psychology.

[60]  Bradley C. Love,et al.  Category Learning 1 Running head: A MODEL OF CATEGORY LEARNING SUSTAIN: A Network Model of Category Learning , 2002 .

[61]  J. D. Smith,et al.  Thirty categorization results in search of a model. , 2000, Journal of experimental psychology. Learning, memory, and cognition.

[62]  J. Kruschke Base rates in category learning. , 1996, Journal of experimental psychology. Learning, memory, and cognition.

[63]  R. Nosofsky,et al.  Rule-plus-exception model of classification learning. , 1994, Psychological review.

[64]  W T Maddox,et al.  Comparing decision bound and exemplar models of categorization , 1993, Perception & psychophysics.

[65]  J. Kruschke,et al.  ALCOVE: an exemplar-based connectionist model of category learning. , 1992, Psychological review.

[66]  Gregory Ashby,et al.  Decision rules in the perception and categorization of multidimensional stimuli. , 1988, Journal of experimental psychology. Learning, memory, and cognition.

[67]  R. Nosofsky American Psychological Association, Inc. Choice, Similarity, and the Context Theory of Classification , 2022 .