Wrapping up the bad news – HIV assembly and release

The late Nobel Laureate Sir Peter Medawar once memorably described viruses as ‘bad news wrapped in protein’. Virus assembly in HIV is a remarkably well coordinated process in which the virus achieves extracellular budding using primarily intracellular budding machinery and also the unusual phenomenon of export from the cell of an RNA. Recruitment of the ESCRT system by HIV is one of the best documented examples of the comprehensive way in which a virus hijacks a normal cellular process. This review is a summary of our current understanding of the budding process of HIV, from genomic RNA capture through budding and on to viral maturation, but centering on the proteins of the ESCRT pathway and highlighting some recent advances in our understanding of the cellular components involved and the complex interplay between the Gag protein and the genomic RNA.

[1]  J. Martin-Serrano,et al.  ESCRT Machinery and Cytokinesis: the Road to Daughter Cell Separation , 2011, Traffic.

[2]  H. Göttlinger,et al.  Efficient and Specific Rescue of Human Immunodeficiency Virus Type 1 Budding Defects by a Nedd4-Like Ubiquitin Ligase , 2008, Journal of Virology.

[3]  W. Sundquist,et al.  ESCRT-III protein requirements for HIV-1 budding. , 2011, Cell host & microbe.

[4]  Roger L. Williams,et al.  A Role for the ESCRT System in Cell Division in Archaea , 2008, Science.

[5]  J. Wills,et al.  Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein , 1997, Journal of virology.

[6]  J. Hurley,et al.  Structural and Functional Organization of the ESCRT-I Trafficking Complex , 2006, Cell.

[7]  J. Hurley,et al.  The ESCRT machinery at a glance , 2009, Journal of Cell Science.

[8]  G. Jensen,et al.  Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p. , 2008, Journal of molecular biology.

[9]  P. Hanson,et al.  Structure/Function Analysis of Four Core ESCRT‐III Proteins Reveals Common Regulatory Role for Extreme C‐Terminal Domain , 2007, Traffic.

[10]  S. Emr,et al.  Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae , 2003, Journal of Cell Science.

[11]  S. Pettit,et al.  Proteolytic Processing of the P2/Nucleocapsid Cleavage Site Is Critical for Human Immunodeficiency Virus Type 1 RNA Dimer Maturation , 2001, Journal of Virology.

[12]  E. Freed,et al.  Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Melissa Batonick,et al.  Interaction of HIV-1 Gag with the clathrin-associated adaptor AP-2. , 2005, Virology.

[14]  J. R. Campbell,et al.  Alternate promoters and variable splicing lead to hNedd4-2 isoforms with a C2 domain and varying number of WW domains. , 2003, American journal of physiology. Renal physiology.

[15]  Xiaoping Zhou,et al.  Decoding the intrinsic mechanism that prohibits ALIX interaction with ESCRT and viral proteins. , 2010, The Biochemical journal.

[16]  P. Bieniasz,et al.  Role of ESCRT-I in Retroviral Budding , 2003, Journal of Virology.

[17]  A. Aiyar,et al.  Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Martin-Serrano,et al.  Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release , 2008, Proceedings of the National Academy of Sciences.

[19]  P. Bieniasz,et al.  Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles , 2009, Proceedings of the National Academy of Sciences.

[20]  K. Nagashima,et al.  Late Assembly Motifs of Human T-Cell Leukemia Virus Type 1 and Their Relative Roles in Particle Release , 2004, Journal of Virology.

[21]  A. Ono,et al.  Nucleocapsid Promotes Localization of HIV-1 Gag to Uropods That Participate in Virological Synapses between T Cells , 2010, PLoS pathogens.

[22]  J. Renaud,et al.  The ESCRT-0 Component HRS is Required for HIV-1 Vpu-Mediated BST-2/Tetherin Down-Regulation , 2011, PLoS pathogens.

[23]  T. Stevens,et al.  An MBoC Favorite: Morphological classification of the yeast vacuolar protein-sorting mutants: evidence for a prevacuolar compartment in class E vps mutants , 1992, Molecular biology of the cell.

[24]  W. Weissenhorn,et al.  Structural basis for budding by the ESCRT-III factor CHMP3. , 2006, Developmental cell.

[25]  Scott D. Emr,et al.  Structure of the ESCRT-II endosomal trafficking complex , 2004, Nature.

[26]  W. Sundquist,et al.  The Human Endosomal Sorting Complex Required for Transport (ESCRT-I) and Its Role in HIV-1 Budding*♦ , 2004, Journal of Biological Chemistry.

[27]  C. Bräuchle,et al.  Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component , 2011, Nature Cell Biology.

[28]  Michio Inoue,et al.  Human Immunodeficiency Virus Type 1 Gag Engages the Bro1 Domain of ALIX/AIP1 through the Nucleocapsid , 2007, Journal of Virology.

[29]  J. Hurley,et al.  Molecular Architecture and Functional Model of the Complete Yeast ESCRT-I Heterotetramer , 2007, Cell.

[30]  R. Gorelick,et al.  HIV-1 nucleocapsid protein induces "maturation" of dimeric retroviral RNA in vitro. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Nakao,et al.  Functional involvement of a novel Nedd4‐like ubiquitin ligase on retrovirus budding , 2002, EMBO reports.

[32]  K. C. Klein,et al.  HIV-1 Gag co-opts a cellular complex containing DDX6, a helicase that facilitates capsid assembly , 2012, The Journal of cell biology.

[33]  S. Emr,et al.  ESCRT-I Core and ESCRT-II GLUE Domain Structures Reveal Role for GLUE in Linking to ESCRT-I and Membranes , 2006, Cell.

[34]  Stanley N Cohen,et al.  Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein , 2012, Proceedings of the National Academy of Sciences.

[35]  Annie Heroux,et al.  Biochemical and structural studies of yeast Vps4 oligomerization. , 2008, Journal of molecular biology.

[36]  James D. Riches,et al.  Computational Model of Membrane Fission Catalyzed by ESCRT-III , 2009, PLoS Comput. Biol..

[37]  K. Nagashima,et al.  Structural basis for viral late-domain binding to Alix , 2007, Nature Structural &Molecular Biology.

[38]  K. Nagashima,et al.  Murine Leukemia Virus Nucleocapsid Mutant Particles Lacking Viral RNA Encapsidate Ribosomes , 2002, Journal of Virology.

[39]  G. Odorizzi The multiple personalities of Alix , 2006, Journal of Cell Science.

[40]  V. Vogt,et al.  Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1 , 1995, Journal of virology.

[41]  Sue-Hwa Lin,et al.  The HIV-1 p6/EIAV p9 docking site in Alix is autoinhibited as revealed by a conformation-sensitive anti-Alix monoclonal antibody. , 2008, The Biochemical journal.

[42]  J. Darlix,et al.  Flexible nature and specific functions of the HIV-1 nucleocapsid protein. , 2011, Journal of molecular biology.

[43]  Jennifer Lippincott-Schwartz,et al.  Membrane scission by the ESCRT-III complex , 2009, Nature.

[44]  L. Verplank,et al.  Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Martin-Serrano,et al.  Multiple Interactions between the ESCRT Machinery and Arrestin-Related Proteins: Implications for PPXY-Dependent Budding , 2010, Journal of Virology.

[46]  W. Weissenhorn,et al.  Structural basis for ESCRT-III CHMP3 recruitment of AMSH. , 2011, Structure.

[47]  B. Roques,et al.  Evidence of Interactions between the Nucleocapsid Protein NCp7 and the Reverse Transcriptase of HIV-1* , 1999, The Journal of Biological Chemistry.

[48]  L. Aravind,et al.  UMA and MABP domains throw light on receptor endocytosis and selection of endosomal cargoes , 2010, Bioinform..

[49]  M. Luo,et al.  The Double-Stranded RNA-Binding Protein Staufen Is Incorporated in Human Immunodeficiency Virus Type 1: Evidence for a Role in Genomic RNA Encapsidation , 2000, Journal of Virology.

[50]  W. Sundquist,et al.  ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding. , 2012, Developmental cell.

[51]  A. Adler,et al.  The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo , 2004, The Journal of cell biology.

[52]  Marc C. Johnson,et al.  An LYPSL Late Domain in the Gag Protein Contributes to the Efficient Release and Replication of Rous Sarcoma Virus , 2010, Journal of Virology.

[53]  K. Nagashima,et al.  PPPYEPTAP Motif Is the Late Domain of Human T-Cell Leukemia Virus Type 1 Gag and Mediates Its Functional Interaction with Cellular Proteins Nedd4 and Tsg101 , 2003, Journal of Virology.

[54]  L. Ratner,et al.  Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism , 1997, Journal of virology.

[55]  W. Weissenhorn,et al.  Charged Multivesicular Body Protein 2B (CHMP2B) of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) Polymerizes into Helical Structures Deforming the Plasma Membrane* , 2011, The Journal of Biological Chemistry.

[56]  S. Emr,et al.  ESCRT‐II coordinates the assembly of ESCRT‐III filaments for cargo sorting and multivesicular body vesicle formation , 2010, The EMBO journal.

[57]  A. Gatignol,et al.  Identification of Staufen in the Human Immunodeficiency Virus Type 1 Gag Ribonucleoprotein Complex and a Role in Generating Infectious Viral Particles , 2004, Molecular and Cellular Biology.

[58]  H. Zentgraf,et al.  The Mason-Pfizer Monkey Virus PPPY and PSAP Motifs Both Contribute to Virus Release , 2003, Journal of Virology.

[59]  R. D. Fisher,et al.  HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein , 2003, The Journal of cell biology.

[60]  J. Hurley,et al.  Beyond Tsg101: the role of Alix in 'ESCRTing' HIV-1 , 2007, Nature Reviews Microbiology.

[61]  Jill Trewhella,et al.  Activation of the Retroviral Budding Factor ALIX , 2011, Journal of Virology.

[62]  W. Sundquist,et al.  Structural and mechanistic studies of VPS4 proteins , 2005, The EMBO journal.

[63]  Anchi Cheng,et al.  Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice , 2007, Cell.

[64]  W. B. Snyder,et al.  Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. , 2002, Developmental cell.

[65]  Wesley I. Sundquist,et al.  Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding , 2001, Cell.

[66]  P. Bieniasz,et al.  HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway , 2005, The Journal of cell biology.

[67]  Natalie Elia,et al.  Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission , 2011, Proceedings of the National Academy of Sciences.

[68]  J. Lieberman,et al.  Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen , 2007, Science.

[69]  Dong Yang,et al.  Structural role of the Vps4-Vta1 interface in ESCRT-III recycling. , 2010, Structure.

[70]  B. Strack,et al.  Human Immunodeficiency Virus Type 1 and Related Primate Lentiviruses Engage Clathrin through Gag-Pol or Gag , 2011, Journal of Virology.

[71]  Anne L’hernault,et al.  HIV-2 Genome Dimerization Is Required for the Correct Processing of Gag: a Second-Site Reversion in Matrix Can Restore Both Processes in Dimerization-Impaired Mutant Viruses , 2012, Journal of Virology.

[72]  Kunio Nagashima,et al.  The Nucleocapsid Region of HIV-1 Gag Cooperates with the PTAP and LYPXnL Late Domains to Recruit the Cellular Machinery Necessary for Viral Budding , 2009, PLoS pathogens.

[73]  J. Sodroski,et al.  Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[74]  A. Calistri,et al.  AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding , 2003, Cell.

[75]  E. Barklis,et al.  Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation , 1995, Journal of virology.

[76]  S. Gygi,et al.  Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding. , 2007, Cell host & microbe.

[77]  P. Bieniasz,et al.  Identification of Human VPS37C, a Component of Endosomal Sorting Complex Required for Transport-I Important for Viral Budding* , 2005, Journal of Biological Chemistry.

[78]  M. Prevost,et al.  The PPPY Motif of Human T-Cell Leukemia Virus Type 1 Gag Protein Is Required Early in the Budding Process , 2002, Journal of Virology.

[79]  Frank Heinrich,et al.  HIV-1 Gag extension: conformational changes require simultaneous interaction with membrane and nucleic acid. , 2011, Journal of molecular biology.

[80]  A. Calistri,et al.  Regulation of CHMP4/ESCRT-III Function in Human Immunodeficiency Virus Type 1 Budding by CC2D1A , 2012, Journal of Virology.

[81]  T. R. Peters,et al.  AP-3 Directs the Intracellular Trafficking of HIV-1 Gag and Plays a Key Role in Particle Assembly , 2005, Cell.

[82]  S. Balasubramanian,et al.  Comparative structural effects of HIV-1 Gag and nucleocapsid proteins in binding to and unwinding of the viral RNA packaging signal. , 2012, Biochemistry.

[83]  E. Freed,et al.  p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease , 1995, Journal of virology.

[84]  D. Katzmann,et al.  Mvb12 is a novel member of ESCRT-I involved in cargo selection by the multivesicular body pathway. , 2006, Molecular biology of the cell.

[85]  P. Bieniasz,et al.  Analysis of the Initiating Events in HIV-1 Particle Assembly and Genome Packaging , 2010, PLoS pathogens.

[86]  Wesley I. Sundquist,et al.  Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein , 2002, Nature Structural Biology.

[87]  W. Sundquist,et al.  Interactions of the Human LIP5 Regulatory Protein with Endosomal Sorting Complexes Required for Transport*♦ , 2012, The Journal of Biological Chemistry.

[88]  Zhaohui Xu,et al.  ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. , 2008, Developmental cell.

[89]  M. Wainberg,et al.  Compensatory Point Mutations in the Human Immunodeficiency Virus Type 1 Gag Region That Are Distal from Deletion Mutations in the Dimerization Initiation Site Can Restore Viral Replication , 1998, Journal of Virology.

[90]  S. Emr,et al.  Novel Ist1-Did2 complex functions at a late step in multivesicular body sorting. , 2007, Molecular biology of the cell.

[91]  W. Sundquist,et al.  The Protein Network of HIV Budding , 2003, Cell.

[92]  P. Bieniasz,et al.  HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress , 2001, Nature Medicine.

[93]  V. Dussupt,et al.  Identification of the HIV-1 NC Binding Interface in Alix Bro1 Reveals a Role for RNA , 2012, Journal of Virology.

[94]  W. Sundquist,et al.  NEDD4L Overexpression Rescues the Release and Infectivity of Human Immunodeficiency Virus Type 1 Constructs Lacking PTAP and YPXL Late Domains , 2008, Journal of Virology.

[95]  M. Wainberg,et al.  Deletion Mutagenesis within the Dimerization Initiation Site of Human Immunodeficiency Virus Type 1 Results in Delayed Processing of the p2 Peptide from Precursor Proteins , 1999, Journal of Virology.

[96]  A. Beyer,et al.  Mammalian cells express two VPS4 proteins both of which are involved in intracellular protein trafficking. , 2001, Journal of molecular biology.

[97]  K. Nagashima,et al.  An Alix Fragment Potently Inhibits HIV-1 Budding , 2006, Journal of Biological Chemistry.

[98]  J. Hurley,et al.  Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes , 2010, Nature.

[99]  P. Bieniasz,et al.  A Bipartite Late-Budding Domain in Human Immunodeficiency Virus Type 1 , 2003, Journal of Virology.

[100]  J. Martin-Serrano,et al.  Parallels Between Cytokinesis and Retroviral Budding: A Role for the ESCRT Machinery , 2007, Science.

[101]  J. Kaye,et al.  Human Immunodeficiency Virus Types 1 and 2 Differ in the Predominant Mechanism Used for Selection of Genomic RNA for Encapsidation , 1999, Journal of Virology.

[102]  D. Pérez-Caballero,et al.  Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[103]  S. Emr,et al.  The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function , 1998, The EMBO journal.

[104]  W. Sundquist,et al.  The Role of LIP5 and CHMP5 in Multivesicular Body Formation and HIV-1 Budding in Mammalian Cells* , 2005, Journal of Biological Chemistry.

[105]  R. D. Fisher,et al.  Human ESCRT-II Complex and Its Role in Human Immunodeficiency Virus Type 1 Release , 2006, Journal of Virology.

[106]  K. Rosendal,et al.  The growth-regulatory protein HCRP1/hVps37A is a subunit of mammalian ESCRT-I and mediates receptor down-regulation. , 2004, Molecular biology of the cell.

[107]  C. Hill,et al.  Structure and function of the membrane deformation AAA ATPase Vps4. , 2012, Biochimica et biophysica acta.

[108]  W. Weissenhorn,et al.  The Crystal Structure of the C‐Terminal Domain of Vps28 Reveals a Conserved Surface Required for Vps20 Recruitment , 2006, Traffic.

[109]  M. Summers,et al.  Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[110]  V. Dussupt,et al.  The ESCRT-Associated Protein Alix Recruits the Ubiquitin Ligase Nedd4-1 To Facilitate HIV-1 Release through the LYPXnL L Domain Motif , 2010, Journal of Virology.

[111]  Sanford M. Simon,et al.  Imaging the biogenesis of individual HIV-1 virions in live cells , 2008, Nature.

[112]  Michael R Dores,et al.  ALIX binds a YPX3L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting , 2012, The Journal of cell biology.

[113]  W. Sundquist,et al.  Structural Basis for ESCRT-III Protein Autoinhibition , 2009, Nature Structural &Molecular Biology.

[114]  W. Weissenhorn,et al.  CC2D1A is a regulator of ESCRT-III CHMP4B. , 2012, Journal of molecular biology.

[115]  P. Bieniasz,et al.  Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu , 2008, Nature.

[116]  Bonnie L. Firestein,et al.  Identification of a host protein essential for assembly of immature HIV-1 capsids , 2002, Nature.

[117]  Michio Inoue,et al.  Human Immunodeficiency Virus Type 1 Gag Engages the Bro 1 Domain of ALIX / AIP 1 through the Nucleocapsid , 2008 .

[118]  M. Wainberg,et al.  Translation of Pr55(gag) augments packaging of human immunodeficiency virus type 1 RNA in a cis-acting manner. , 2002, AIDS research and human retroviruses.

[119]  T. Nishizawa,et al.  Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions. , 2011, The Journal of general virology.

[120]  D. Johnston,et al.  bicoid RNA localization requires specific binding of an endosomal sorting complex , 2007, Nature.

[121]  W. Sundquist,et al.  Assembly and analysis of conical models for the HIV-1 core. , 1999, Science.

[122]  A. Audhya,et al.  Association of the Endosomal Sorting Complex ESCRT-II with the Vps20 Subunit of ESCRT-III Generates a Curvature-sensitive Complex Capable of Nucleating ESCRT-III Filaments* , 2011, The Journal of Biological Chemistry.

[123]  K. Nagashima,et al.  PPPYVEPTAP Motif Is the Late Domain of Human T-Cell Leukemia Virus Type 1 Gag and Mediates Its Functional Interaction with Cellular Proteins Nedd4 and Tsg101 , 2004, Journal of Virology.

[124]  Mark Yeager,et al.  X-Ray Structures of the Hexameric Building Block of the HIV Capsid , 2009, Cell.

[125]  P. Woodman,et al.  TSG101/Mammalian VPS23 and Mammalian VPS28 Interact Directly and Are Recruited to VPS4-induced Endosomes* , 2001, The Journal of Biological Chemistry.

[126]  M. Cho,et al.  Construction and Characterization of a Temperature-Sensitive Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutant , 1998, Journal of Virology.

[127]  A. Hoppe,et al.  Quantitative Fluorescence Resonance Energy Transfer Microscopy Analysis of the Human Immunodeficiency Virus Type 1 Gag-Gag Interaction: Relative Contributions of the CA and NC Domains and Membrane Binding , 2009, Journal of Virology.

[128]  A. Lever,et al.  Comparison of Viral Genomic RNA Sorting Mechanisms in Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Moloney Murine Leukemia Virus , 2000, Journal of Virology.

[129]  Jacob Piehler,et al.  Helical Structures of ESCRT-III Are Disassembled by VPS4 , 2008, Science.

[130]  H. Göttlinger,et al.  Potent Rescue of Human Immunodeficiency Virus Type 1 Late Domain Mutants by ALIX/AIP1 Depends on Its CHMP4 Binding Site , 2007, Journal of Virology.

[131]  Marc C. Johnson,et al.  Clathrin Facilitates the Morphogenesis of Retrovirus Particles , 2011, PLoS pathogens.

[132]  J. Hurley,et al.  Structural basis for endosomal targeting by the Bro1 domain. , 2005, Developmental cell.

[133]  M. Summers,et al.  Entropic switch regulates myristate exposure in the HIV-1 matrix protein. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[134]  S. Goff,et al.  Infectivity of Moloney Murine Leukemia Virus Defective in Late Assembly Events Is Restored by Late Assembly Domains of Other Retroviruses , 2000, Journal of Virology.

[135]  A. Rein,et al.  In Vitro Assembly Properties of Human Immunodeficiency Virus Type 1 Gag Protein Lacking the p6 Domain , 1999, Journal of Virology.

[136]  W. Sundquist,et al.  ESCRT-III recognition by VPS4 ATPases , 2007, Nature.

[137]  S. Rollinson,et al.  UBAP1 Is a Component of an Endosome-Specific ESCRT-I Complex that Is Essential for MVB Sorting , 2011, Current Biology.

[138]  R. D. Fisher,et al.  Structural and functional studies of ALIX interactions with YPXnL late domains of HIV-1 and EIAV , 2008, Nature Structural &Molecular Biology.

[139]  Maili Liu,et al.  Structural Basis of Molecular Recognition between ESCRT-III-like Protein Vps60 and AAA-ATPase Regulator Vta1 in the Multivesicular Body Pathway*♦ , 2012, The Journal of Biological Chemistry.

[140]  M. Bycroft,et al.  The UBAP1 Subunit of ESCRT-I Interacts with Ubiquitin via a SOUBA Domain , 2012, Structure.

[141]  V. Chukkapalli,et al.  Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain , 2010, Proceedings of the National Academy of Sciences.

[142]  O. Nikolaitchik,et al.  Functional complementation of nucleocapsid and late domain PTAP mutants of human immunodeficiency virus type 1 during replication. , 2008, Virology.

[143]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[144]  J. Hurley,et al.  In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters , 2012, Proceedings of the National Academy of Sciences.

[145]  Roger L. Williams,et al.  The emerging shape of the ESCRT machinery , 2007, Nature Reviews Molecular Cell Biology.

[146]  W. Sundquist,et al.  ESCRT‐III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV‐1 budding , 2013, Cellular microbiology.

[147]  Ylva Ivarsson,et al.  Syndecan–syntenin–ALIX regulates the biogenesis of exosomes , 2012, Nature Cell Biology.

[148]  D. I. Svergun,et al.  A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. , 2009, Structure.

[149]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[150]  P. Bieniasz,et al.  Dynamics of ESCRT protein recruitment during retroviral assembly , 2011, Nature Cell Biology.

[151]  D. Eckert,et al.  Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1 , 2006, The Journal of cell biology.

[152]  S. Emr,et al.  Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. , 2008, Structure.

[153]  A. Lever HIV-1 RNA packaging. , 2007, Advances in pharmacology.

[154]  E. Chertova,et al.  Human immunodeficiency virus type 1 preferentially encapsidates genomic RNAs that encode Pr55(Gag): functional linkage between translation and RNA packaging. , 2002, Virology.

[155]  P. Ivanov,et al.  Unexpected roles for UPF1 in HIV-1 RNA metabolism and translation. , 2008, RNA.

[156]  E. Freed,et al.  Retrovirus budding. , 2004, Virus research.

[157]  E. Barklis,et al.  Analysis of Human Immunodeficiency Virus Type 1 Gag Dimerization-Induced Assembly , 2005, Journal of Virology.

[158]  Marc C. Johnson,et al.  The stoichiometry of Gag protein in HIV-1 , 2004, Nature Structural &Molecular Biology.

[159]  R. D. Fisher,et al.  ALIX-CHMP4 interactions in the human ESCRT pathway , 2008, Proceedings of the National Academy of Sciences.

[160]  B. Roques,et al.  Involvement of HIV-I Nucleocapsid Protein in the Recruitment of Reverse Transcriptase into Nucleoprotein Complexes Formedin Vitro* , 1998, The Journal of Biological Chemistry.

[161]  R. D. Fisher,et al.  Structural and Biochemical Studies of ALIX/AIP1 and Its Role in Retrovirus Budding , 2007, Cell.

[162]  W. Sundquist,et al.  Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. , 2008, Developmental cell.

[163]  J. Huibregtse,et al.  Rescue of HIV-1 Release by Targeting Widely Divergent NEDD4-Type Ubiquitin Ligases and Isolated Catalytic HECT Domains to Gag , 2010, PLoS pathogens.

[164]  Gerhard Hummer,et al.  Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[165]  J. Luban,et al.  Basic Residues in Human Immunodeficiency Virus Type 1 Nucleocapsid Promote Virion Assembly via Interaction with RNA , 2000, Journal of Virology.

[166]  M. Malim,et al.  Matrix Mediates the Functional Link between Human Immunodeficiency Virus Type 1 RNA Nuclear Export Elements and the Assembly Competency of Gag in Murine Cells , 2009, Journal of Virology.

[167]  C. Cameron,et al.  Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain , 1996, Journal of virology.

[168]  J. Church Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen , 2008, Pediatrics.

[169]  W. Fu,et al.  Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions , 1994, Journal of virology.

[170]  A. Debnath,et al.  Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain , 2011, Retrovirology.

[171]  J. Wills,et al.  Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins , 1995, Journal of virology.

[172]  S. Emr,et al.  Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4 , 2007, Nature.

[173]  M. Curtiss,et al.  Ist1 regulates Vps4 localization and assembly. , 2007, Molecular biology of the cell.

[174]  M. Babst A Protein's Final ESCRT , 2005, Traffic.

[175]  E. Barklis,et al.  Analysis of the Assembly Function of the Human Immunodeficiency Virus Type 1 Gag Protein Nucleocapsid Domain , 1998, Journal of Virology.

[176]  Zhaohui Xu,et al.  Structural basis of Ist1 function and Ist1-Did2 interaction in the multivesicular body pathway and cytokinesis. , 2009, Molecular biology of the cell.

[177]  S. Goff,et al.  Cellular Motor Protein KIF-4 Associates with Retroviral Gag , 1999, Journal of Virology.

[178]  C. Cameron,et al.  An assembly domain of the Rous sarcoma virus Gag protein required late in budding , 1994, Journal of virology.

[179]  M. Curtiss,et al.  Assembly of the AAA ATPase Vps4 on ESCRT-III , 2010, Molecular biology of the cell.

[180]  S. Emr,et al.  Mammalian Tumor Susceptibility Gene 101 (TSG101) and the Yeast Homologue, Vps23p, Both Function in Late Endosomal Trafficking , 2000, Traffic.

[181]  K. Boris-Lawrie,et al.  Translation Is Not Required To Generate Virion Precursor RNA in Human Immunodeficiency Virus Type 1-Infected T Cells , 2000, Journal of Virology.

[182]  Daniel St Johnston,et al.  staufen, a gene required to localize maternal RNAs in the Drosophila egg , 1991, Cell.

[183]  S. Emr,et al.  Functional Reconstitution of ESCRT-III Assembly and Disassembly , 2009, Cell.

[184]  P. Hanson,et al.  Plasma membrane deformation by circular arrays of ESCRT-III protein filaments , 2008, The Journal of cell biology.

[185]  M. Summers,et al.  Structural determinants and mechanism of HIV-1 genome packaging. , 2011, Journal of molecular biology.