Accurate Stationary Densities with Partitioned Numerical Methods for Stochastic Differential Equations

We devise explicit partitioned numerical methods for second-order-in-time scalar stochastic differential equations, using one Gaussian random variable per timestep. The construction proceeds by analysis of the stationary density in the case of constant-coefficient linear equations, imposing exact stationary statistics in the position variable and absence of correlation between position and velocity; the remaining error is in the velocity variable. A new two-stage “reverse leapfrog” method has good properties in the position variable and is symplectic in the limit of zero damping. Explicit new “Runge-Kutta leapfrog” methods are constructed, sharing the property that $q_{n+1}=q_n+\frac{1}{2}(p_n+p_{n+1})\Delta t$, whose mean-square velocity order increases with the number of stages.

[1]  H. Schurz Preservation of probabilistic laws through Euler methods for ornstein-uhlenbeck process , 1999 .

[2]  R. A. Ferrell,et al.  Statistical mechanics of one-dimensional Ginzburg--Landau fields , 1972 .

[3]  S. Habib,et al.  Stochastic PDEs: convergence to the continuum? , 2001 .

[4]  T. Schlick,et al.  THE NOTION OF ERROR IN LANGEVIN DYNAMICS. I. LINEAR ANALYSIS , 1996 .

[5]  Grant Lythe,et al.  Controlling one-dimensional Langevin dynamics on the lattice , 1999 .

[6]  Robert V. Kohn,et al.  Action minimization and sharp‐interface limits for the stochastic Allen‐Cahn equation , 2007 .

[7]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[8]  D L Stein,et al.  Droplet nucleation and domain wall motion in a bounded interval. , 2001, Physical review letters.

[9]  Benedict Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Acknowledgements , 2005 .

[10]  I. Gyöngy Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations Driven by Space-Time White Noise I , 1998 .

[11]  J. Voss,et al.  Analysis of SPDEs arising in path sampling. Part I: The Gaussian case , 2005 .

[12]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[13]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[14]  Eric Vanden-Eijnden,et al.  Invariant measures of stochastic partial differential equations and conditioned diffusions , 2005 .

[15]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[16]  Habib,et al.  Statistical mechanics of kinks in 1+1 dimensions. , 1993, Physical review letters.

[17]  Omar Lakkis,et al.  Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem , 2007, 1111.6312.

[18]  Tony Shardlow,et al.  Stochastic perturbations of the Allen{Cahn equation , 2000 .

[19]  Peter E. Kloeden,et al.  The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds , 2011, J. Comput. Appl. Math..

[20]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[21]  Salman Habib,et al.  Kink stochastics , 2006, Computing in Science & Engineering.

[22]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[23]  Henri Schurz,et al.  The Invariance of Asymptotic Laws of Linear Stochastic Systems under Discretization , 1999 .

[24]  R. Skeel,et al.  Analysis of a few numerical integration methods for the Langevin equation , 2003 .

[25]  K. Wilson,et al.  Langevin simulations of lattice field theories. , 1985, Physical review. D, Particles and fields.

[26]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[27]  A. Stuart,et al.  Conditional Path Sampling of SDEs and the Langevin MCMC Method , 2004 .

[28]  P. Kloeden,et al.  Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space–time noise , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Hendrik Weber,et al.  Sharp interface limit for invariant measures of a stochastic Allen‐Cahn equation , 2009, 0908.2717.

[30]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[31]  Kevin Burrage,et al.  Numerical Methods for Second-Order Stochastic Differential Equations , 2007, SIAM J. Sci. Comput..

[32]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[33]  Andreas Rößler,et al.  Runge–Kutta Methods for Itô Stochastic Differential Equations with Scalar Noise , 2006 .

[34]  Jesús Vigo-Aguiar,et al.  Weak Second Order Conditions for Stochastic Runge-Kutta Methods , 2002, SIAM J. Sci. Comput..

[35]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[36]  Mario Castro,et al.  Numerical Experiments on Noisy Chains: From Collective Transitions to Nucleation-Diffusion , 2008, SIAM J. Appl. Dyn. Syst..

[37]  Alan R. Bishop,et al.  Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology , 1980 .

[38]  R. Mannella,et al.  Numerical Stochastic Integration for Quasi-Symplectic Flows , 2005, SIAM J. Sci. Comput..

[39]  Grant Lythe,et al.  Kinks in a Stochastic PDE , 2003 .

[40]  R Mannella Quasisymplectic integrators for stochastic differential equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  R. Landauer,et al.  Nucleation theory of overdamped soliton motion , 1981 .

[42]  Tony Shardlow,et al.  Modified Equations for Stochastic Differential Equations , 2006 .

[43]  Barbara Gentz,et al.  Anomalous behavior of the Kramers rate at bifurcations in classical field theories , 2008, 0809.2652.

[44]  K. Burrage,et al.  Stability Criteria for Implicit Runge–Kutta Methods , 1979 .

[45]  Habib,et al.  Dynamics of kinks: nucleation, diffusion, and annihilation , 2000, Physical review letters.

[46]  Büttiker,et al.  Nucleation of Weakly Driven Kinks. , 1995, Physical review letters.

[47]  J. P. Hirth,et al.  Dislocation Dynamics at Low Temperatures , 1959 .

[48]  Assyr Abdulle,et al.  S-ROCK: Chebyshev Methods for Stiff Stochastic Differential Equations , 2008, SIAM J. Sci. Comput..

[49]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[50]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .