On partial contraction analysis for coupled nonlinear oscillators

We describe a simple yet general method to analyze networks of coupled identical nonlinear oscillators and study applications to fast synchronization, locomotion, and schooling. Specifically, we use nonlinear contraction theory to derive exact and global (rather than linearized) results on synchronization, antisynchronization, and oscillator death. The method can be applied to coupled networks of various structures and arbitrary size. For oscillators with positive definite diffusion coupling, it can be shown that synchronization always occurs globally for strong enough coupling strengths, and an explicit upper bound on the corresponding threshold can be computed through eigenvalue analysis. The discussion also extends to the case when network structure varies abruptly and asynchronously, as in “flocks” of oscillators or dynamic elements.

[1]  R. Rand,et al.  The transition from phase locking to drift in a system of two weakly coupled van der pol oscillators , 1988 .

[2]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[3]  Wolf Singer,et al.  Feed-forward synchronization: propagation of temporal patterns along the retinothalamocortical pathway. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  Jean-Jacques E. Slotine,et al.  Modular stability tools for distributed computation and control , 2003 .

[5]  Israel A. Wagner,et al.  Probabilistic Pursuits on the Grid , 1997 .

[6]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[7]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[8]  R. Murray,et al.  Agreement problems in networks with directed graphs and switching topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[9]  J. J. Collins,et al.  Hexapodal gaits and coupled nonlinear oscillator models , 1993, Biological Cybernetics.

[10]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[11]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[12]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[13]  P. Holmes,et al.  Bifurcation of periodic motions in two weakly coupled van der Pol oscillators , 1980 .

[14]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[15]  N. Kopell We Got Rhythm: Dynamical Systems of the Nervous System , 1999 .

[16]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[17]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[18]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[19]  Nancy Kopell,et al.  Waves and synchrony in networks of oscillators of relaxation and non-relaxation type , 1995 .

[20]  A. Barabasi,et al.  Physics of the rhythmic applause. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  A. Turing,et al.  The chemical basis of morphogenesis. 1953. , 1990, Bulletin of mathematical biology.

[22]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[23]  Nancy Kopell,et al.  Rapid synchronization through fast threshold modulation , 1993, Biological Cybernetics.

[24]  C SIAMJ. DISTRIBUTED CONTROL OF SPATIALLY REVERSIBLE INTERCONNECTED SYSTEMS WITH BOUNDARY CONDITIONS∗ , 2005 .

[25]  George J. Pappas,et al.  Coordination of Multiple Autonomous Vehicles , 2003 .

[26]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[27]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[28]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[29]  Jean-Jacques E. Slotine,et al.  Control system design for mechanical systems using contraction theory , 2000, IEEE Trans. Autom. Control..

[30]  Steven W. Zucker,et al.  Perceptual grouping , 1998 .

[31]  G. Ermentrout,et al.  Symmetry and phaselocking in chains of weakly coupled oscillators , 1986 .

[32]  I. Stewart,et al.  Coupled nonlinear oscillators and the symmetries of animal gaits , 1993 .

[33]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[34]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[35]  Peter E. Latham,et al.  Optimal computation with attractor networks , 2003, Journal of Physiology-Paris.

[36]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[37]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .

[38]  A. Winfree The geometry of biological time , 1991 .

[39]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[40]  H. Hemami,et al.  Modeling of a Neural Pattern Generator with Coupled nonlinear Oscillators , 1987, IEEE Transactions on Biomedical Engineering.

[41]  Raffaello D'Andrea,et al.  Distributed Control of Spatially Reversible Interconnected Systems with Boundary Conditions , 2005, SIAM J. Control. Optim..

[42]  K. Bar-Eli,et al.  On the stability of coupled chemical oscillators , 1985 .

[43]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[44]  R. Rand,et al.  Dynamics of two strongly coupled van der pol oscillators , 1982 .

[45]  S. Strogatz Exploring complex networks , 2001, Nature.

[46]  Mireille E. Broucke,et al.  Local control strategies for groups of mobile autonomous agents , 2004, IEEE Transactions on Automatic Control.

[47]  Leif H. Finkel,et al.  Perceptual grouping in striate cortical networks mediated by synchronization and desynchronization , 1999, Neurocomputing.

[48]  Bojan Mohar,et al.  Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..

[49]  Leif H. Finkel,et al.  Computational modeling of medium spiny projection neurons in nucleus accumbens: toward the cellular mechanisms of afferent stream integration , 2001, Proc. IEEE.

[50]  H. Sebastian Seung,et al.  Continuous attractors and oculomotor control , 1998, Neural Networks.

[51]  Haim Sompolinsky,et al.  Oscillations by symmetry breaking in homogeneous networks with electrical coupling. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  E Marder,et al.  Network Oscillations Generated by Balancing Graded Asymmetric Reciprocal Inhibition in Passive Neurons , 1999, The Journal of Neuroscience.

[53]  M. Golubitsky,et al.  Patterns of Oscillation in Coupled Cell Systems , 2002 .

[54]  P. Bressloff,et al.  DYNAMICS OF A RING OF PULSE-COUPLED OSCILLATORS : GROUP THEORETIC APPROACH , 1997 .

[55]  S. Coombes Phase locking in networks of synaptically coupled McKean relaxation oscillators , 2001 .

[56]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[57]  L. Pecora Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems , 1998 .

[58]  Jean-Jacques E. Slotine,et al.  Modularity, evolution, and the binding problem: a view from stability theory , 2001, Neural Networks.

[59]  H. Nijmeijer,et al.  Partial synchronization: from symmetry towards stability , 2002 .

[60]  Wolfgang Ketterle WHEN ATOMS BEHAVE AS WAVES: BOSE–EINSTEIN CONDENSATION AND THE ATOM LASER , 2002 .

[61]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[62]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[63]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[64]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[65]  H. Sebastian Seung,et al.  Permitted and Forbidden Sets in Symmetric Threshold-Linear Networks , 2003, Neural Computation.

[66]  L. Chua Cnn: A Paradigm for Complexity , 1998 .

[67]  Cutts,et al.  ENERGY SAVINGS IN FORMATION FLIGHT OF PINK-FOOTED GEESE , 1994, The Journal of experimental biology.

[68]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[69]  D. V. Reddy,et al.  Experimental Evidence of Time Delay Induced Death in Coupled Limit Cycle Oscillators , 2000 .

[70]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[71]  S. Smale,et al.  A Mathematical Model of Two Cells Via Turing’s Equation , 1976 .

[72]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[73]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[74]  I. Rock,et al.  The legacy of Gestalt psychology. , 1990, Scientific American.

[75]  P. Krishnaprasad,et al.  Oscillations, SE(2)-snakes and motion control: A study of the Roller Racer , 2001 .

[76]  J J Hopfield,et al.  What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  N. Kopell,et al.  Anti-phase solutions in relaxation oscillators coupled through excitatory interactions , 1995, Journal of mathematical biology.

[78]  Valentin Dragoi,et al.  Synchronization of Locally Coupled Neural Oscillators , 2004, Neural Processing Letters.

[79]  Carlos D. Brody,et al.  Simple Networks for Spike-Timing-Based Computation, with Application to Olfactory Processing , 2003, Neuron.

[80]  R. May,et al.  Infectious disease dynamics: What characterizes a successful invader? , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[81]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[82]  G. Ermentrout,et al.  Amplitude response of coupled oscillators , 1990 .

[83]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[84]  Jean-Jacques E. Slotine,et al.  Nonlinear process control using contraction theory , 2000 .

[85]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[86]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[87]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[88]  George J. Pappas,et al.  Stable flocking of mobile agents part I: dynamic topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[89]  Jean-Jacques E. Slotine,et al.  A Study of Synchronization and Group Cooperation Using Partial Contraction Theory , 2004 .

[90]  M. Golubitsky,et al.  Symmetry in locomotor central pattern generators and animal gaits , 1999, Nature.

[91]  Ian Stewart,et al.  A modular network for legged locomotion , 1998 .

[92]  J K Hedrick,et al.  A systems interpretation for observations of bird V-formations. , 2003, Journal of theoretical biology.