Dynamic Impact for Ant Colony Optimization algorithm

This paper proposes an extension method for Ant Colony Optimization (ACO) algorithm called Dynamic Impact. Dynamic Impact is designed to solve challenging optimization problems that has nonlinear relationship between resource consumption and fitness in relation to other part of the optimized solution. This proposed method is tested against complex real-world Microchip Manufacturing Plant Production Floor Optimization (MMPPFO) problem, as well as theoretical benchmark Multi-Dimensional Knapsack problem (MKP). MMPPFO is a non-trivial optimization problem, due the nature of solution fitness value dependence on collection of wafer-lots without prioritization of any individual wafer-lot. Using Dynamic Impact on single objective optimization fitness value is improved by 33.2%. Furthermore, MKP benchmark instances of small complexity have been solved to 100% success rate where high degree of solution sparseness is observed, and large instances have showed average gap improved by 4.26 times. Algorithm implementation demonstrated superior performance across small and large datasets and sparse optimization problems.

[1]  Zhijing Yang,et al.  Binary artificial algae algorithm for multidimensional knapsack problems , 2016, Appl. Soft Comput..

[2]  Mingfei Chen,et al.  Optimisation of partial collaborative transportation scheduling in supply chain management with 3PL using ACO , 2017, Expert Syst. Appl..

[3]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[4]  H.-H. Huang,et al.  SOLVING THE MULTI-RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM USING ANT COLONY OPTIMIZATION , 2013 .

[5]  Z. Michalewicz,et al.  A new version of ant system for subset problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[6]  Dimitrios K. Karpouzos,et al.  A Set of New Benchmark Optimization Problems for Water Resources Management , 2013, Water Resources Management.

[7]  Shiji Song,et al.  Robust Scheduling of Hot Rolling Production by Local Search Enhanced Ant Colony Optimization Algorithm , 2020, IEEE Transactions on Industrial Informatics.

[8]  Long Wan,et al.  Single-machine scheduling to minimize the total earliness and tardiness is strongly NP-hard , 2013, Oper. Res. Lett..

[9]  Klaus Kabitzsch,et al.  Continuous flow transport scheduling for conveyor-based AMHS in wafer fabs , 2017, 2017 Winter Simulation Conference (WSC).

[10]  R. Sivaraj,et al.  Imputation of Discrete and Continuous Missing Values in Large Datasets Using Bayesian Based Ant Colony Optimization , 2016 .

[11]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[12]  T. Stützle,et al.  MAX-MIN Ant System and local search for the traveling salesman problem , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[13]  Rong-Hwa Huang,et al.  Ant colony system for job shop scheduling with time windows , 2008 .

[14]  Marco Dorigo,et al.  Ant system for Job-shop Scheduling , 1994 .

[15]  Zhibin Jiang,et al.  Decomposition-based classified ant colony optimization algorithm for scheduling semiconductor wafer fabrication system , 2012, Comput. Ind. Eng..

[16]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[17]  Hugo Terashima-Marín,et al.  An Experimental Study on Ant Colony Optimization Hyper-Heuristics for Solving the Knapsack Problem , 2018, MCPR.

[18]  Richard Y. K. Fung,et al.  Optimal K-unit cycle scheduling of two-cluster tools with residency constraints and general robot moving times , 2016, J. Sched..

[19]  Vladimir Ejov,et al.  A new benchmark set for Traveling salesman problem and Hamiltonian cycle problem , 2018, ArXiv.

[20]  Hartmut Schmeck,et al.  Ant colony optimization for resource-constrained project scheduling , 2000, IEEE Trans. Evol. Comput..

[21]  Graham Kendall,et al.  Exploring Hyper-heuristic Methodologies with Genetic Programming , 2009 .

[22]  Shengxiang Yang,et al.  Ant Colony Optimization With Local Search for Dynamic Traveling Salesman Problems , 2017, IEEE Transactions on Cybernetics.

[23]  Richard F. Hartl,et al.  An ant colony optimization approach for the single machine total tardiness problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[24]  Daniela Favaretto,et al.  Ant colony system for a VRP with multiple time windows and multiple visits , 2007 .

[25]  Christine Solnon,et al.  Combining two pheromone structures for solving the car sequencing problem with Ant Colony Optimization , 2008, Eur. J. Oper. Res..

[26]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[27]  Jin-Kao Hao,et al.  A hybrid approach for the 0-1 multidimensional knapsack problem , 2001, IJCAI 2001.

[28]  Parham Moradi,et al.  Relevance-redundancy feature selection based on ant colony optimization , 2015, Pattern Recognit..

[29]  Panos M. Pardalos,et al.  A diverse human learning optimization algorithm , 2016, Journal of Global Optimization.

[30]  Ivars Dzalbs,et al.  Accelerating supply chains with Ant Colony Optimization across a range of hardware solutions , 2020, Computers & Industrial Engineering.

[31]  Edson Cáceres,et al.  An experimental evaluation of a parallel simulated annealing approach for the 0-1 multidimensional knapsack problem , 2018, J. Parallel Distributed Comput..

[32]  Edmund K. Burke,et al.  A Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework Using the Multidimensional Knapsack Problem , 2016, Evolutionary Computation.

[33]  Milan Tuba,et al.  Improved ACO Algorithm with Pheromone Correction Strategy for the Traveling Salesman Problem , 2013, Int. J. Comput. Commun. Control.

[34]  Ivars Dzalbs,et al.  Simple generate-evaluate strategy for tight-budget parameter tuning problems , 2020, 2020 IEEE Symposium Series on Computational Intelligence (SSCI).

[35]  Ed Keedwell,et al.  H-ACO: A Heterogeneous Ant Colony Optimisation Approach with Application to the Travelling Salesman Problem , 2017, Artificial Evolution.

[36]  Mauro Birattari,et al.  Updating ACO Pheromones Using Stochastic Gradient Ascent and Cross-Entropy Methods , 2002, EvoWorkshops.

[37]  K. Teo,et al.  A Binary differential search algorithm for the 0-1 multidimensional knapsack problem , 2016 .

[38]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[39]  Steven Li,et al.  Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm , 2015, Comput. Oper. Res..

[40]  Hu Peng,et al.  Dichotomous Binary Differential Evolution for Knapsack Problems , 2016 .

[41]  Zalilah Abd Aziz Ant Colony Hyper-heuristics for Travelling Salesman Problem☆ , 2015 .

[42]  Thomas Stützle,et al.  Ant Colony Optimization: Overview and Recent Advances , 2018, Handbook of Metaheuristics.

[43]  Stefka Fidanova,et al.  Heuristics for multiple knapsack problem , 2005, IADIS AC.

[44]  S. V. Chupov An Approximate Algorithm for Lexicographic Search in Multiple Orders for the Solution of the Multidimensional Boolean Knapsack Problem , 2018, Cybernetics and Systems Analysis.

[45]  Yuhai Zhao,et al.  Self-Adjusting Ant Colony Optimization Based on Information Entropy for Detecting Epistatic Interactions , 2019, Genes.

[46]  Riccardo Poli,et al.  Toward subheuristic search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[47]  Tatiana Kalganova,et al.  Composite goal methods for transportation network optimization , 2015, Expert Syst. Appl..

[48]  Arun Kumar Sangaiah,et al.  A modified flower pollination algorithm for the multidimensional knapsack problem: human-centric decision making , 2018, Soft Comput..

[49]  Maw-Sheng Chern,et al.  Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem , 2014 .