Reliability-Output Decoding of Tail-Biting Convolutional Codes

We present extensions to Raghavan and Baum's reliability-output Viterbi algorithm (ROVA) to accommodate tail-biting convolutional codes. These tail-biting reliability-output algorithms compute the exact word-error probability of the decoded codeword after first calculating the posterior probability of the decoded tail-biting codeword's starting state. One approach employs a state-estimation algorithm that selects the maximum a posteriori state based on the posterior distribution of the starting states. Another approach is an approximation to the exact tail-biting ROVA that estimates the word-error probability. A comparison of the computational complexity of each approach is discussed in detail. The presented reliability-output algorithms apply to both feedforward and feedback tail-biting convolutional encoders. These tail-biting reliability-output algorithms are suitable for use in reliability-based retransmission schemes with short blocklengths, in which terminated convolutional codes would introduce rate loss.

[1]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[2]  B. Sundar Rajan,et al.  Efficient Convergent Maximum Likelihood Decoding on Tail-Biting Trellises , 2006, ArXiv.

[3]  Peter A. Hoeher,et al.  Word Error Probability Estimation by Means of a Modified Viterbi Decoder , 2007, 2007 IEEE 66th Vehicular Technology Conference.

[4]  Yunghsiang Sam Han,et al.  New HARQ Scheme Based on Decoding of Tail-Biting Convolutional Codes in IEEE 802.16e , 2011, IEEE Transactions on Vehicular Technology.

[5]  John B. Anderson,et al.  Properties of the Tailbiting BCJR Decoder , 2001 .

[6]  Peter A. Hoeher,et al.  Reliability-based retransmission criteria for hybrid ARQ , 2009, IEEE Transactions on Communications.

[7]  Priti Shankar,et al.  ML decoding of block codes on their tailbiting trellises , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[8]  R. V. Cox,et al.  An efficient adaptive circular Viterbi algorithm for decoding generalized tailbiting convolutional codes , 1994 .

[9]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[10]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[11]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[12]  Rolf Johannesson,et al.  Boosting the error performance of suboptimal tailbiting decoders , 2003, IEEE Trans. Commun..

[13]  Shu Lin,et al.  Two decoding algorithms for tailbiting codes , 2003, IEEE Trans. Commun..

[14]  Yunghsiang Sam Han,et al.  Reliability-Based Decoding for Convolutional Tail-Biting Codes , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[15]  Nam Yul Yu Performances of Punctured Tail-Biting Convolutional Codes Using Initial State Estimation , 2008, 2008 IEEE 68th Vehicular Technology Conference.

[16]  John B. Anderson,et al.  Decision depths of convolutional codes , 1989, IEEE Trans. Inf. Theory.

[17]  John B. Anderson,et al.  An optimal circular Viterbi decoder for the bounded distance criterion , 2002, IEEE Trans. Commun..

[18]  Carl W. Baum,et al.  A Reliability Output Viterbi Algorithm with Applications to Hybrid ARQ , 1998, IEEE Trans. Inf. Theory.

[19]  Jack K. Wolf,et al.  On Tail Biting Convolutional Codes , 1986, IEEE Trans. Commun..

[20]  Shlomo Shamai,et al.  On Optimal Erasure and List Decoding Schemes of Convolutional Codes , 2009 .

[21]  Rolf Johannesson,et al.  A note on tailbiting codes and their feedback encoders , 2002, IEEE Trans. Inf. Theory.

[22]  Antonio Valdovinos,et al.  A* Based Algorithm for Reduced Complexity ML Decoding of Tailbiting Codes , 2010, IEEE Communications Letters.

[23]  H. Vincent Poor,et al.  Feedback in the Non-Asymptotic Regime , 2011, IEEE Transactions on Information Theory.

[24]  Kohji Itoh,et al.  Viterbi decoding algorithm for convolutional codes with repeat request , 1980, IEEE Trans. Inf. Theory.

[25]  Richard D. Wesel,et al.  Reliability-based error detection for feedback communication with low latency , 2013, 2013 IEEE International Symposium on Information Theory.

[26]  Daniel J. Costello,et al.  Error Control Coding, Second Edition , 2004 .

[27]  John B. Anderson,et al.  Tailbiting MAP Decoders , 1998, IEEE J. Sel. Areas Commun..