Classes of structures with universe a subset of ω1
暂无分享,去创建一个
Julia F. Knight | Sy-David Friedman | Ekaterina B. Fokina | Russell G. Miller | S. Friedman | J. Knight | Russell G. Miller | E. Fokina
[1] S. S. Goncharov,et al. Constructive models of complete solvable theories , 1973 .
[2] Sy D. Friedman. Uncountable admissibles. I. Forcing , 1982 .
[3] Julia F. Knight,et al. Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..
[4] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.). , 2022 .
[5] D. Marker. Model theory : an introduction , 2002 .
[6] J. Shepherdson,et al. Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[7] D. C. Cooper,et al. Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.
[8] Jesse Werth Johnson. Computable model theory for uncountable structures , 2013 .
[9] Harvey M. Friedman,et al. A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.
[10] Noam Greenberg,et al. Effective Mathematics of the Uncountable: Computable structure theory using admissible recursion theory on ω1 using admissibility , 2013 .
[11] B. L. Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen , 1930 .
[12] A. Nerode,et al. Effective content of field theory , 1979 .
[13] Michael Morley. Decidable models , 1976 .
[14] J. Knight,et al. COMPUTABLE STRUCTURE THEORY USING ADMISSIBLE RECURSION THEORY ON ω1 , 2011 .
[15] Terrence Millar. Foundations of recursive model theory , 1978 .
[16] Bakhadyr Khoussainov,et al. Complexity of Categorical Theories with Computable Models , 2004 .
[17] S. Goncharov,et al. Computable structures of Scott rank ω CK 1 in familiar classes , 2005 .
[18] Journal für die reine und angewandte Mathematik , 1893 .
[19] A. Nerode,et al. Recursively enumerable vector spaces , 1977 .
[20] D. Shapiro,et al. Composites of algebraically closed fields , 1990 .
[21] W. Calvert,et al. Comparing Classes of Finite Structures , 2004, 0803.3291.
[22] Jesse Johnson,et al. The Arithmetical Hierarchy in the Setting of ω1 , 2013, Comput..
[23] John Chisholm,et al. Effective model theory vs. recursive model theory , 1990, Journal of Symbolic Logic.
[24] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraische Grössen. , 2022 .
[25] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[26] Julia A. Knight. Computable structures of Scott rank , 2011 .
[27] I︠U︡riĭ Leonidovich Ershov. Recursive model theory , 1998 .
[28] Julia F. Knight,et al. Isomorphism relations on computable structures , 2012, J. Symb. Log..
[29] Julia F. Knight,et al. Computable trees of Scott rank ω1CK, and computable approximation , 2006, Journal of Symbolic Logic.
[30] Steffen Lempp,et al. Computability and uncountable Linear Orders I: Computable Categoricity , 2015, J. Symb. Log..