Classes of structures with universe a subset of ω1

We continue recent work on computable structure theory in the setting of ω1. We prove the analogue of a result from Fokina et al. (2012 J. Symbolic Logic, 77, 122–132) saying that isomorphism of computable structures lies ‘on top’ among � 1 equivalence relations on ω. Our equivalence relations are on ω1. In the standard setting, � 1 1 sets are characterized in terms of paths through trees. In the setting of ω1, we use a new characterization of � 1 1 sets that involves clubs in ω1. Finally, we present some new results about ω1-computable categoricity for fields.

[1]  S. S. Goncharov,et al.  Constructive models of complete solvable theories , 1973 .

[2]  Sy D. Friedman Uncountable admissibles. I. Forcing , 1982 .

[3]  Julia F. Knight,et al.  Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..

[4]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.). , 2022 .

[5]  D. Marker Model theory : an introduction , 2002 .

[6]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[8]  Jesse Werth Johnson Computable model theory for uncountable structures , 2013 .

[9]  Harvey M. Friedman,et al.  A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.

[10]  Noam Greenberg,et al.  Effective Mathematics of the Uncountable: Computable structure theory using admissible recursion theory on ω1 using admissibility , 2013 .

[11]  B. L. Waerden Eine Bemerkung über die Unzerlegbarkeit von Polynomen , 1930 .

[12]  A. Nerode,et al.  Effective content of field theory , 1979 .

[13]  Michael Morley Decidable models , 1976 .

[14]  J. Knight,et al.  COMPUTABLE STRUCTURE THEORY USING ADMISSIBLE RECURSION THEORY ON ω1 , 2011 .

[15]  Terrence Millar Foundations of recursive model theory , 1978 .

[16]  Bakhadyr Khoussainov,et al.  Complexity of Categorical Theories with Computable Models , 2004 .

[17]  S. Goncharov,et al.  Computable structures of Scott rank ω CK 1 in familiar classes , 2005 .

[18]  Journal für die reine und angewandte Mathematik , 1893 .

[19]  A. Nerode,et al.  Recursively enumerable vector spaces , 1977 .

[20]  D. Shapiro,et al.  Composites of algebraically closed fields , 1990 .

[21]  W. Calvert,et al.  Comparing Classes of Finite Structures , 2004, 0803.3291.

[22]  Jesse Johnson,et al.  The Arithmetical Hierarchy in the Setting of ω1 , 2013, Comput..

[23]  John Chisholm,et al.  Effective model theory vs. recursive model theory , 1990, Journal of Symbolic Logic.

[24]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraische Grössen. , 2022 .

[25]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[26]  Julia A. Knight Computable structures of Scott rank , 2011 .

[27]  I︠U︡riĭ Leonidovich Ershov Recursive model theory , 1998 .

[28]  Julia F. Knight,et al.  Isomorphism relations on computable structures , 2012, J. Symb. Log..

[29]  Julia F. Knight,et al.  Computable trees of Scott rank ω1CK, and computable approximation , 2006, Journal of Symbolic Logic.

[30]  Steffen Lempp,et al.  Computability and uncountable Linear Orders I: Computable Categoricity , 2015, J. Symb. Log..