Real-time CNC interpolators for Bézier conics

Abstract Arbitrary conic segments can be specified in the rational Bezier form, r (ξ) for ξ∈[0,1], by control points p 0 , p 1 , p 2 and a scalar weight w1. An expression for the cumulative arc length function s(ξ), amenable to accurate and efficient evaluation, is required in formulating real-time CNC interpolators capable of achieving a desired (constant or varying) feedrate V=ds/dt along such curves. For w1=1 (a parabola), s(ξ) admits a closed-form expression that entails a single square root and natural logarithm in its evaluation. However, for w1 1 (a hyperbola), complete and incomplete elliptic integrals of the first and second kind arise in s(ξ). A recursive algorithm, based on the arithmetic-geometric mean, provides a rapidly-convergent scheme to compute such integrals to machine precision in real-time applications. These methods endow CNC machines with the ability to realize time-dependent feedrates precisely along “simple” analytic curves (conics), furnishing a natural complement to the currently-available exact real-time interpolators for free-form Pythagorean-hodograph (PH) curves.

[1]  Daniel C. H. Yang,et al.  Parametric interpolator versus linear interpolator for precision CNC machining , 1994, Comput. Aided Des..

[2]  Jui-Jen Chou,et al.  On the Generation of Coordinated Motion of Five-Axis CNC/CMM Machines , 1992 .

[3]  Plerre Bézier Emploi des machines a commande numérique , 1970 .

[4]  Rong-Shine Lin,et al.  Real-Time Interpolators for Multi-Axis CNC Machine Tools , 1994 .

[5]  島淳,et al.  更なる高速・高精度な金型加工を実現させる64ビットRISC付Series 15NURBS補間 , 1996 .

[6]  A. Ralston A first course in numerical analysis , 1965 .

[7]  Rida T. Farouki,et al.  Performance analysis of CNC interpolators for time-dependent feedrates along PH curves , 2001, Comput. Aided Geom. Des..

[8]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[9]  Gerald Farin,et al.  Geometric modeling : algorithms and new trends , 1987 .

[10]  Robert E. Barnhill,et al.  Geometry Processing for Design and Manufacturing , 1992 .

[11]  Moshe Shpitalni,et al.  Realtime curve interpolators , 1994, Comput. Aided Des..

[12]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[13]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .

[14]  Rida T. Farouki,et al.  Real-time CNC interpolators for Pythagorean-hodograph curves , 1996, Comput. Aided Geom. Des..

[15]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[16]  Jui-Jen Chou,et al.  Command Generation for Three-Axis CNC Machining , 1991 .

[17]  D. J. Hofsommer,et al.  On the numerical calculation of elliptic integrals of the first and second kind and the elliptic functions of Jacobi , 1963 .

[18]  Rida T. Farouki,et al.  Construction ofC2 Pythagorean-hodograph interpolating splines by the homotopy method , 1996, Adv. Comput. Math..

[19]  Rida T. Farouki,et al.  Exact Taylor series coefficients for variable-feedrate CNC curve interpolators , 2001, Comput. Aided Des..

[20]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[21]  Syh-Shiuh Yeh,et al.  The speed-controlled interpolator for machining parametric curves , 1999, Comput. Aided Des..

[22]  Takis Sakkalis,et al.  Pythagorean-hodograph space curves , 1994, Adv. Comput. Math..

[23]  Gerald E. Farin Curvature continuity and offsets for piecewise conics , 1989, TOGS.

[24]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .

[25]  A. R. DiDonato,et al.  New Formulas for Computing Incomplete Elliptic Integrals of the First and Second Kind , 1959, JACM.

[26]  A. A. Maradudin,et al.  Tables of Higher Functions , 1960 .

[27]  Rida T. Farouki,et al.  Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves , 1998, Comput. Aided Des..

[28]  Rida T. Farouki,et al.  Conic Approximation of Conic Offsets , 1997, J. Symb. Comput..

[29]  G. E. Lee-Whiting,et al.  Formulas for Computing Incomplete Elliptic Integrals of the First and Second Kinds , 1963, JACM.

[30]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .