Optimal processing rate and buffer size of a jump-diffusion processing system

In this paper, we propose a reflected jump-diffusion model for processing systems with finite buffer size. We derive an analytic expression for the total expected discounted managing cost, which facilitates finding (numerically) the optimal processing rate and buffer size that minimize the total cost. Moreover, the formula for steady-state density of the processing system is obtained.

[1]  J. M. Harrison,et al.  Drift rate control of a Brownian processing system , 2005 .

[2]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[3]  Michael N. Katehakis,et al.  On the maintenance of systems composed of highly reliable components , 1989 .

[4]  Lijun Bo,et al.  Levy Risk Model with Two-Sided Jumps and a Barrier Dividend Strategy , 2011 .

[5]  Lijun Bo,et al.  Some integral functionals of reflected SDEs and their applications in finance , 2008 .

[6]  Lars Nørvang Andersen,et al.  Subexponential loss rate asymptotics for Lévy processes , 2011, Math. Methods Oper. Res..

[7]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[8]  S. Asmussen,et al.  Russian and American put options under exponential phase-type Lévy models , 2004 .

[9]  Lijun Bo,et al.  On the conditional default probability in a regulated market: a structural approach , 2010 .

[10]  Hui Wang,et al.  First passage times of a jump diffusion process , 2003, Advances in Applied Probability.

[11]  S. Asmussen,et al.  Local Time Asymptotics for Centered Lévy Processes with Two-Sided Reflection , 2011 .

[12]  Monique Jeanblanc,et al.  Double-exponential jump-diffusion processes: a structural model of an endogenous default barrier with a rollover debt structure , 2012 .

[13]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[14]  On the conditional default probability in a regulated market with jump risk , 2013 .

[15]  Dmitry Efrosinin Queueing model of a hybrid channel with faster link subject to partial and complete failures , 2013, Ann. Oper. Res..

[16]  Xianping Guo,et al.  Constrained Markov decision processes with first passage criteria , 2012, Annals of Operations Research.

[17]  P. Protter Stochastic integration and differential equations , 1990 .

[18]  Steven Kou,et al.  Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model , 2012, Oper. Res..

[19]  D. Perry,et al.  Drift control of international reserves , 2007 .

[20]  Arka P. Ghosh,et al.  Optimal buffer size for a stochastic processing network in heavy traffic , 2007, Queueing Syst. Theory Appl..

[21]  René Bekker,et al.  Queues with Lévy input and hysteretic control , 2009, Queueing Syst. Theory Appl..

[22]  Double Exponential Jump Di ff usion Process : A Structural Model of Endogenous Default Barrier with Roll-over Debt Structure , 2006 .

[23]  Katsushige Sawaki,et al.  The Valuation of Russian Options for Double Exponential Jump Diffusion Processes , 2010, Asia Pac. J. Oper. Res..

[24]  Ning Cai,et al.  On first passage times of a hyper-exponential jump diffusion process , 2009, Oper. Res. Lett..

[25]  Søren Asmussen,et al.  Loss Rates for Lévy Processes with Two Reflecting Barriers , 2007, Math. Oper. Res..

[26]  Michael N. Katehakis,et al.  On the optimal maintenance of systems and control of arrivals in queues , 1995 .

[27]  John H. Vande Vate,et al.  Drift Control with Changeover Costs , 2011, Oper. Res..

[28]  Ho Woo Lee,et al.  A MAP-modulated fluid flow model with multiple vacations , 2013, Ann. Oper. Res..

[29]  Benjamin Melamed,et al.  Martingale methods for pricing inventory penalties under continuous replenishment and compound renewal demands , 2013, Ann. Oper. Res..