PAR-1 Kinase Plays an Initiator Role in a Temporally Ordered Phosphorylation Process that Confers Tau Toxicity in Drosophila

[1]  E. Mandelkow,et al.  MARKK, a Ste20‐like kinase, activates the polarity‐inducing kinase MARK/PAR‐1 , 2003, The EMBO journal.

[2]  M. Mattson,et al.  Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles Intracellular Aβ and Synaptic Dysfunction , 2003, Neuron.

[3]  Kazuyuki Takata,et al.  Cdk5 Is a Key Factor in Tau Aggregation and Tangle Formation In Vivo , 2003, Neuron.

[4]  Isao Nishimura,et al.  Parkin Suppresses Dopaminergic Neuron-Selective Neurotoxicity Induced by Pael-R in Drosophila , 2003, Neuron.

[5]  Y. Jan,et al.  Hippocampal Neuronal Polarity Specified by Spatially Localized mPar3/mPar6 and PI 3-Kinase Activity , 2003, Cell.

[6]  G. Seydoux,et al.  Anterior-Posterior Polarity in C. elegans and Drosophila--PARallels and Differences , 2002, Science.

[7]  E. Mandelkow,et al.  Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. , 2002, Molecular biology of the cell.

[8]  D. Selkoe Alzheimer's Disease Is a Synaptic Failure , 2002, Science.

[9]  I. Grundke‐Iqbal,et al.  Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK‐3β , 2002, FEBS letters.

[10]  D. Selkoe,et al.  The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics , 2002, Science.

[11]  D. Geschwind,et al.  Human Wild-Type Tau Interacts with wingless Pathway Components and Produces Neurofibrillary Pathology in Drosophila , 2002, Neuron.

[12]  A. Ephrussi,et al.  Par-1 regulates stability of the posterior determinant Oskar by phosphorylation , 2002, Nature Cell Biology.

[13]  M. Fortini,et al.  Gene expression pattern Identification and characterization of the Drosophila tau homolog , 2001 .

[14]  R. Nitsch,et al.  Formation of Neurofibrillary Tangles in P301L Tau Transgenic Mice Induced by Aβ42 Fibrils , 2001, Science.

[15]  J. Hardy,et al.  Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP , 2001, Science.

[16]  Yuh Nung Jan,et al.  PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling , 2001, Nature Cell Biology.

[17]  Joshua M. Shulman,et al.  Tauopathy in Drosophila: Neurodegeneration Without Neurofibrillary Tangles , 2001, Science.

[18]  Y. Jan,et al.  Drosophila par-1 is required for oocyte differentiation and microtubule organization , 2001, Current Biology.

[19]  René Hen,et al.  Decreased nuclear β‐catenin, tau hyperphosphorylation and neurodegeneration in GSK‐3β conditional transgenic mice , 2001 .

[20]  M. Mercken,et al.  Glycogen Synthase Kinase-3β Phosphorylates Protein Tau and Rescues the Axonopathy in the Central Nervous System of Human Four-repeat Tau Transgenic Mice* , 2000, The Journal of Biological Chemistry.

[21]  P. Davies A Very Incomplete Comprehensive Theory of Alzheimer's Disease , 2000, Annals of the New York Academy of Sciences.

[22]  Wen-Lang Lin,et al.  Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein , 2000, Nature Genetics.

[23]  Pavel Tomancak,et al.  A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation , 2000, Nature Cell Biology.

[24]  M. Gall,et al.  The cyclin-dependent kinase Cdk5 controls multiple aspects of axon patterning in vivo , 2000, Current Biology.

[25]  Richard Benton,et al.  The Drosophila Homolog of C. elegans PAR-1 Organizes the Oocyte Cytoskeleton and Directs oskar mRNA Localization to the Posterior Pole , 2000, Cell.

[26]  G. Johnson,et al.  Microtubule/MAP‐Affinity Regulating Kinase (MARK) Is Activated by Phenylarsine Oxide In Situ and Phosphorylates Tau Within Its Microtubule‐Binding Domain , 2000, Journal of neurochemistry.

[27]  B. Dickson,et al.  Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. , 2000, Development.

[28]  L. Tsai,et al.  Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration , 1999, Nature.

[29]  E. Mandelkow,et al.  Alzheimer's disease: The tangled tale of tau , 1999, Nature.

[30]  Bin Zhang,et al.  Age-Dependent Emergence and Progression of a Tauopathy in Transgenic Mice Overexpressing the Shortest Human Tau Isoform , 1999, Neuron.

[31]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[32]  E. Mandelkow,et al.  Tau in Alzheimer's disease. , 1998, Trends in cell biology.

[33]  A Klug,et al.  Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[35]  G. Schellenberg,et al.  Tau is a candidate gene for chromosome 17 frontotemporal dementia , 1998, Annals of neurology.

[36]  K. Imahori,et al.  Characterization of tau phosphorylation in glycogen synthase kinase-3beta and cyclin dependent kinase-5 activator (p23) transfected cells. , 1998, Biochimica et biophysica acta.

[37]  E. Mandelkow,et al.  Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. , 1998, European journal of biochemistry.

[38]  M. Drab,et al.  Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity , 1997, Current Biology.

[39]  N L Foster,et al.  Frontotemporal dementia and parkinsonism linked to chromosome 17: A consensus conference , 1997, Annals of neurology.

[40]  G. Drewes,et al.  MARK, a Novel Family of Protein Kinases That Phosphorylate Microtubule-Associated Proteins and Trigger Microtubule Disruption , 1997, Cell.

[41]  D. Dickson,et al.  Neurodegenerative disorders with extensive tau pathology: A comparative study and review , 1996, Annals of neurology.

[42]  M. Goedert,et al.  Tau protein is phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II within its microtubule-binding domains at Ser-262 and Ser-356. , 1996, The Biochemical journal.

[43]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[44]  J. Ávila,et al.  Glycogen synthase kinase 3 phosphorylates recombinant human tau protein at serine‐262 in the presence of heparin (or tubulin) , 1995, FEBS letters.

[45]  J. Trojanowski,et al.  Detection of Phosphorylated Ser262 in Fetal Tau, Adult Tau, and Paired Helical Filament Tau (*) , 1995, The Journal of Biological Chemistry.

[46]  P. Cohen,et al.  Molecular dissection of the paired helical filament , 1995, Neurobiology of Aging.

[47]  K. Kemphues,et al.  par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed , 1995, Cell.

[48]  E. Mandelkow,et al.  Microtubule-associated Protein/Microtubule Affinity-regulating Kinase (p110mark) , 1995, The Journal of Biological Chemistry.

[49]  Simon Lovestone,et al.  Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells , 1994, Current Biology.

[50]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[51]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[52]  M. Goedert Neurofibrillary pathology of Alzheimer's disease and other tauopathies. , 1998, Progress in brain research.