Shrinking light to allow forbidden transitions on the atomic scale
暂无分享,去创建一个
Bo Zhen | Ido Kaminer | Marin Soljačić | M. Soljačić | J. Joannopoulos | B. Zhen | I. Kaminer | Nicholas Rivera | John D. Joannopoulos | N. Rivera
[1] F. Koppens,et al. Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.
[2] H. Riedmatten,et al. Electrical control of optical emitter relaxation pathways enabled by graphene , 2014, Nature Physics.
[3] J. P. Woerdman,et al. Plasmon-assisted transmission of entangled photons , 2002, Nature.
[4] O. Hess,et al. Nonequilibrium plasmons with gain in graphene , 2014, 1412.3042.
[5] Malin Premaratne,et al. Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: beyond the dipole approximation. , 2009, Optics express.
[6] P. Nordlander,et al. Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles. , 2016, ACS nano.
[7] Pavel Ginzburg,et al. Applications of two-photon processes in semiconductor photonic devices: invited review , 2011 .
[8] Sandberg,et al. Two-Photon Spectroscopy of Trapped Atomic Hydrogen. , 1996, Physical review letters.
[9] H. Bässler,et al. Triplet states in organic semiconductors , 2009 .
[10] B. Hecht,et al. Principles of nano-optics , 2006 .
[11] E. Paspalakis,et al. Giant enhancement of dipole-forbidden transitions via lattices of plasmonic nanoparticles , 2015 .
[12] P. Ginzburg,et al. Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors. , 2010, Nano letters.
[13] David R. Smith,et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.
[14] W. R. Salaneck,et al. Electroluminescence in conjugated polymers , 1999, Nature.
[15] F. Koppens,et al. Universal distance-scaling of nonradiative energy transfer to graphene. , 2013, Nano letters.
[16] C. N. Lau,et al. Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).
[17] Guanxiong Liu,et al. Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography. , 2012, ACS nano.
[18] L. Novotný,et al. Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement , 2002 .
[19] G. Breit,et al. Metastability of 2 s States of Hydrogenic Atoms , 1959 .
[20] Christos Argyropoulos,et al. Ultrafast spontaneous emission source using plasmonic nanoantennas , 2015, Nature Communications.
[21] Hajime Ishihara,et al. Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube , 2013, Nature Photonics.
[22] Peter Lodahl,et al. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.
[23] Pavel Ginzburg,et al. Observation of two-photon emission from semiconductors , 2008 .
[24] Jean-Jacques Greffet,et al. Quantum theory of spontaneous and stimulated emission of surface plasmons , 2010, 1004.0135.
[25] S. Fan,et al. Graphene surface plasmons at the near-infrared optical regime , 2014, Scientific Reports.
[26] S. J. Park,et al. Acoustic plasmon on the Au(111) surface. , 2010, Physical review letters.
[27] K. Emtsev,et al. Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets , 2008 .
[28] T. Nagao,et al. Experimental investigation of two-dimensional plasmons in a DySi 2 monolayer on Si(111) , 2008 .
[29] Stefan A. Maier,et al. Quantum Plasmonics , 2016, Proceedings of the IEEE.
[30] Matthew Pelton,et al. Modified spontaneous emission in nanophotonic structures , 2015, Nature Photonics.
[31] F. Guinea,et al. Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.
[32] Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas , 2011, 1110.3927.
[33] S. Scheel,et al. MACROSCOPIC QUANTUM ELECTRODYNAMICS — CONCEPTS AND APPLICATIONS , 2008, 0902.3586.
[34] Marin Soljacic,et al. Plasmons in Graphene: Fundamental Properties and Potential Applications , 2013, Proceedings of the IEEE.
[35] C. cohen-tannoudji,et al. Atom-Photon Interactions: Basic Processes and Applications , 1992 .
[36] A. H. Castro Neto,et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.
[37] T. Nagao,et al. Dispersion and damping of a two-dimensional plasmon in a metallic surface-state band. , 2001, Physical review letters.
[38] G. Vignale,et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.
[39] Maria Göppert,et al. Über die Wahrscheinlichkeit des Zusammenwirkens zweier Lichtquanten in einem Elementarakt , 1929, Naturwissenschaften.
[40] D. Ohlberg,et al. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. , 2014, ACS nano.
[41] A. N. Grigorenko,et al. Graphene plasmonics , 2012, Nature Photonics.
[42] Dirk-Gunnar Welsch,et al. QED in dispersing and absorbing media , 2000 .
[43] Andrea Alù,et al. Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .
[44] M. Soljavci'c,et al. Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.
[45] J. M. Pitarke,et al. Low-energy acoustic plasmons at metal surfaces , 2007, Nature.
[46] E. Teller,et al. Metastability of Hydrogen and Helium Levels. , 1940 .
[47] P. Dirac. The Quantum Theory of the Emission and Absorption of Radiation , 1927 .
[48] L. Novotný,et al. Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement , 2002 .
[49] R. Baer,et al. Near-field manipulation of spectroscopic selection rules on the nanoscale , 2012, Proceedings of the National Academy of Sciences.