canSAR: update to the cancer translational research and drug discovery knowledgebase

Abstract canSAR (http://cansar.icr.ac.uk) is the largest, public, freely available, integrative translational research and drug discovery knowledgebase for oncology. canSAR integrates vast multidisciplinary data from across genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and more. It also provides unique data, curation and annotation and crucially, AI-informed target assessment for drug discovery. canSAR is widely used internationally by academia and industry. Here we describe significant developments and enhancements to the data, web interface and infrastructure of canSAR in the form of the new implementation of the system: canSARblack. We demonstrate new functionality in aiding translation hypothesis generation and experimental design, and show how canSAR can be adapted and utilised outside oncology.

[1]  Frances M. G. Pearl,et al.  Therapeutic opportunities within the DNA damage response , 2015, Nature Reviews Cancer.

[2]  Paul Workman,et al.  canSAR: update to the cancer translational research and drug discovery knowledgebase , 2018, Nucleic Acids Res..

[3]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[4]  Lincoln D Stein,et al.  The International Cancer Genome Consortium Data Portal , 2019, Nature Biotechnology.

[5]  Hyojin Kim,et al.  TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions , 2017, Nucleic Acids Res..

[6]  The UniProt Consortium,et al.  UniProt: a worldwide hub of protein knowledge , 2018, Nucleic Acids Res..

[7]  Mishal N. Patel,et al.  Objective assessment of cancer genes for drug discovery , 2012, Nature Reviews Drug Discovery.

[8]  Alfonso Valencia,et al.  PDBe-KB: a community-driven resource for structural and functional annotations , 2019, Nucleic Acids Res..

[9]  Johannes Goll,et al.  Protein interaction data curation: the International Molecular Exchange (IMEx) consortium , 2012, Nature Methods.

[10]  Ian Collins,et al.  Objective, Quantitative, Data-Driven Assessment of Chemical Probes , 2017, bioRxiv.

[11]  Bonnie Berger,et al.  A Quantitative Chaperone Interaction Network Reveals the Architecture of Cellular Protein Homeostasis Pathways , 2014, Cell.

[12]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[13]  Allison P. Heath,et al.  Toward a Shared Vision for Cancer Genomic Data. , 2016, The New England journal of medicine.

[14]  Michael K. Gilson,et al.  BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology , 2015, Nucleic Acids Res..

[15]  Patrick Aloy,et al.  A reference map of the human binary protein interactome , 2020, Nature.

[16]  Maja Köhn,et al.  The human DEPhOsphorylation Database DEPOD: 2019 update , 2019, Database J. Biol. Databases Curation.

[17]  Federica Toffalini,et al.  Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data , 2010, Nucleic acids research.

[18]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[19]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[20]  Paul Workman,et al.  Distinctive Behaviors of Druggable Proteins in Cellular Networks , 2015, PLoS Comput. Biol..

[21]  Barry R O'Keefe,et al.  The canSAR data hub for drug discovery. , 2016, The Lancet. Oncology.

[22]  Julian Blagg,et al.  Choose and Use Your Chemical Probe Wisely to Explore Cancer Biology , 2017, Cancer cell.

[23]  B. Al-Lazikani,et al.  Drugging cancer genomes , 2013, Nature Reviews Drug Discovery.

[24]  Erik Bongcam-Rudloff,et al.  A DNA Sequence Directed Mutual Transcription Regulation of HSF1 and NFIX Involves Novel Heat Sensitive Protein Interactions , 2009, PloS one.

[25]  Amanda C. Schierz,et al.  canSAR: an updated cancer research and drug discovery knowledgebase , 2015, Nucleic Acids Res..

[26]  Joseph E. Tym,et al.  Coronavirus canSAR – a Data-Driven, AI-Enabled, Drug Discovery Resource for the Research Community , 2020 .

[27]  Bissan Al-Lazikani,et al.  canSAR: an integrated cancer public translational research and drug discovery resource , 2011, Nucleic Acids Res..

[28]  Wenyu Wang,et al.  DrugComb: an integrative cancer drug combination data portal , 2019, Nucleic acids research.

[29]  Albert A Antolin,et al.  Public resources for chemical probes: the journey so far and the road ahead. , 2019, Future medicinal chemistry.

[30]  Emanuel J. V. Gonçalves,et al.  Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens , 2019, Nature.

[31]  John P. Overington,et al.  The promise and peril of chemical probes. , 2015, Nature chemical biology.

[32]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[34]  C. Sander,et al.  Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets , 2018, Nature Genetics.

[35]  Ann E. Sizemore,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, Nature Genetics.