Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes

In the numerical treatment of integral equations of the first kind using boundary element methods (BEM), the author and E. P. Stephan have derived a posteriori error estimates as tools for both reliable computation and self-adaptive mesh refinement. So far, efficiency of those a posteriori error estimates has been indicated by numerical examples in model situations only. This work affirms efficiency by proving the reverse inequality. Based on best approximation, on inverse inequalities and on stability of the discretization, and complementary to our previous work, an abstract approach yields a converse estimate. This estimate proves efficiency of an a posteriori error estimate in the BEM on quasi uniform meshes for Symm's integral equation, for a hypersingular equation, and for a transmission problem.

[1]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[2]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[3]  Ian H. Sloan,et al.  The Galerkin Method for Integral Equations of the First Kind with Logarithmic Kernel: Applications , 1988 .

[4]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[5]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[6]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[7]  Wolfgang L. Wendland,et al.  Local residual-type error estimates for adaptive boundary element methods on closed curves , 1993 .

[8]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[9]  Carsten Carstensen,et al.  Adaptive boundary-element methods for transmission problems , 1997, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[10]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[11]  Carsten Carstensen,et al.  Adaptive boundary element methods and adaptive finite element and boundary element coupling , 1995 .

[12]  Martin Costabel,et al.  A direct boundary integral equation method for transmission problems , 1985 .

[13]  Martin Costabel,et al.  Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation , 1985 .

[14]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[15]  Carsten Carstensen,et al.  A posteriori error estimates for boundary element methods , 1995 .

[16]  Ian H. Sloan,et al.  The Galerkin Method for Integral Equations of the First Kind with Logarithmic Kernel: Theory , 1988 .

[17]  Carsten Carstensen,et al.  Adaptive coupling of boundary elements and finite elements , 1995 .

[18]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[19]  E. Rank,et al.  Adaptive boundary element methods , 1987 .

[20]  Ernst P. Stephan,et al.  Remarks to Galerkin and least squares methods with finite elements for general elliptic problems , 1976 .

[21]  Kenneth Eriksson,et al.  An adaptive finite element method for linear elliptic problems , 1988 .

[22]  Wolfgang L. Wendland,et al.  Adaptive boundary element methods for strongly elliptic integral equations , 1988 .

[23]  Ernst P. Stephan,et al.  On the integral equation method for the plane mixed boundary value problem of the Laplacian , 1979 .

[24]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[25]  Carsten Carstensen,et al.  Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .

[26]  I. Babuška,et al.  Theh, p andh-p versions of the finite element method in 1 dimension , 1986 .

[27]  Carsten Carstensen,et al.  On the adaptive coupling of FEM and BEM in 2–d–elasticity , 1997 .