Betelgeuse Just Is Not That Cool: Effective Temperature Alone Cannot Explain the Recent Dimming of Betelgeuse

We present optical spectrophotometry of the red supergiant Betelgeuse from 2020 February 15, during its recent unprecedented dimming episode. By comparing this spectrum to stellar atmosphere models for cool supergiants, as well as spectrophotometry of other Milky Way red supergiants, we conclude that Betelgeuse has a current effective temperature of 3600 +/- 25 K. While this is slightly cooler than previous measurements taken prior to Betelgeuse's recent lightcurve evolution, this drop in effective temperature is insufficient to explain Betelgeuse's recent optical dimming. We propose that episodic mass loss and an increase in the amount of large-grain circumstellar dust along our sightline to Betelgeuse is the most likely explanation for its recent photometric evolution.

[1]  J. Wheeler,et al.  The Betelgeuse Project: constraints from rotation , 2016, 1611.08031.

[2]  S. T. Ridgway,et al.  The close circumstellar environment of Betelgeuse - III. SPHERE/ZIMPOL imaging polarimetry in the visible , 2015, 1511.04451.

[3]  K. Olsen,et al.  Late-Type Red Supergiants: Too Cool for the Magellanic Clouds? , 2007, 0705.3431.

[4]  E. Stanway,et al.  BPASS predictions for binary black hole mergers , 2016, 1602.03790.

[5]  P. Hauschildt,et al.  Dust formation in Nova Cassiopeiae 1993 seen by ultraviolet absorption , 1994, Nature.

[6]  K. Olsen,et al.  RED SUPERGIANTS IN THE ANDROMEDA GALAXY (M31) , 2009, 0907.3767.

[7]  E. Guinan,et al.  An Updated 2017 Astrometric Solution for Betelgeuse , 2017, 1706.06020.

[8]  D. D. Astrof'isica,et al.  Spectral type, temperature and evolutionary stage in cool supergiants , 2016, 1605.03239.

[9]  G. Perrin,et al.  The inner dust shell of Betelgeuse detected by polarimetric aperture-masking interferometry , 2019, Astronomy & Astrophysics.

[10]  L. Decin,et al.  The inhomogeneous submillimeter atmosphere of Betelgeuse , 2017, 1706.06021.

[11]  M. Drout,et al.  THE YELLOW AND RED SUPERGIANTS OF M33 , 2012, 1203.0247.

[12]  E. Levesque Astrophysics of Red Supergiants , 2018 .

[13]  HV 11423: The Coolest Supergiant in the SMC , 2007, astro-ph/0701769.

[14]  Keiichi Ohnaka,et al.  Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud , 2008, 0803.3823.

[15]  C. Townes,et al.  Characteristics of dust shells around 13 late-type stars. , 1994 .

[16]  E. Guinan,et al.  Updates on the "Fainting" of Betelgeuse , 2019 .

[17]  P. Mathias,et al.  Convective cells in Betelgeuse: imaging through spectropolarimetry , 2018, Astronomy & Astrophysics.

[18]  Philip Massey,et al.  The effective temperature scale of galactic red supergiants : Cool, but not as cool as we thought , 2005 .

[19]  Robert D. Gehrz,et al.  The Asymmetric Nebula Surrounding the Extreme Red Supergiant Vy Canis Majoris , 2001 .

[20]  G. Herczeg,et al.  EVOLUTIONARY TRACKS FOR BETELGEUSE , 2008, 1406.3143.

[21]  R. Humphreys,et al.  M supergiants in the Milky Way and the Magellanic Clouds Colors, spectral types, and luminosities , 1985 .

[22]  C. Babusiaux,et al.  Radiative hydrodynamic simulations of red supergiant stars - III. Spectro-photocentric variability, photometric variability, and consequences on Gaia measurements , 2010, 1012.5234.

[23]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[24]  N. Mowlavi,et al.  Grids of stellar models with rotation - III. Models from 0.8 to 120 Msun at a metallicity Z = 0.002 , 2013, 1308.2914.

[25]  P. Hauschildt,et al.  Near-IR spectra of red supergiants and giants I. Models with solar and with mixing-induced surface abundance ratios , 2007, 0704.2120.

[26]  P. Massey,et al.  The Evolution of Massive Stars. I. Red Supergiants in the Magellanic Clouds , 2003, astro-ph/0309272.

[27]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[28]  G. Meynet,et al.  Grids of stellar models with rotation , 2013, Astronomy & Astrophysics.

[29]  P. Massey,et al.  Bringing VY Canis Majoris Down to Size: An Improved Determination of Its Effective Temperature , 2006, astro-ph/0604253.

[30]  The Reddening of Red Supergiants: When Smoke Gets in Your Eyes , 2005, astro-ph/0508254.

[31]  Nicholas B. Suntzeff,et al.  SOUTHERN SPECTROPHOTOMETRIC STANDARDS. I. , 1992 .

[32]  G. Perrin,et al.  Evolution of the magnetic field of Betelgeuse from 2009–2017 , 2018, Astronomy & Astrophysics.

[33]  K. Olsen,et al.  The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity , 2006, astro-ph/0603596.

[34]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[35]  S. Meimon,et al.  Imaging the spotty surface of Betelgeuse in the H band , 2009, 0910.4167.

[36]  K. Ohnaka,et al.  The close circumstellar environment of Betelgeuse - V. Rotation velocity and molecular envelope properties from ALMA , 2017, 1711.07983.

[37]  P. Massey,et al.  SPECTRAL TYPES OF RED SUPERGIANTS IN NGC 6822 AND THE WOLF–LUNDMARK–MELOTTE GALAXY , 2012, 1204.4450.

[38]  R. Kudritzki,et al.  THE TEMPERATURES OF RED SUPERGIANTS , 2013, 1302.2674.

[39]  T. Verhoelst,et al.  The dust condensation sequence in red supergiant stars , 2009, 0901.1262.

[40]  M. T. Schuster,et al.  The Circumstellar Environments of NML Cygni and the Cool Hypergiants , 2005, astro-ph/0510010.

[41]  S. Wolf,et al.  Large dust grains in the wind of VY Canis Majoris , 2015, 1511.07624.

[42]  E. Levesque Red Supergiants in the JWST Era. I. Near-IR Photometric Diagnostics , 2018, The Astrophysical Journal.