Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations

Abstract Looking for fast lithium ion conductors as solid state electrolytes is of great significance to achieve better safety for next generation lithium batteries. As an important prerequisite for developing all-solid-state lithium secondary batteries, the materials with high lithium ionic conductivity and inhibited electronic conductivity must be found. By implementing the bond-valence code and the automation simulation flow, we perform the high-throughput bond-valence calculations to screen fast lithium ion conductors from more than 1000 lithium-contained compounds in ICSD database. The candidate structures are identified and their kinetic properties as well as electronic structures are analyzed through bond-valence method and density functional theory calculations, respectively. The promising structures are selected to be further optimized in the future.

[1]  K. Kanehori,et al.  Thin film solid electrolyte and its application to secondary lithium cell , 1983 .

[2]  S. Sen,et al.  Ionic conduction and mixed cation effect in silicate glasses and liquids : 23Na and 7Li NMR spin-lattice relaxation and a multiple-barrier model of percolation , 1996 .

[3]  Kang Xu,et al.  LiBOB: Is it an alternative salt for lithium ion chemistry? , 2005 .

[4]  T. Minami,et al.  Raman spectra of rapidly quenched glasses in the systems lithium borate-lithium silicate-lithium phosphate (Li3BO3-Li4SiO4-Li3PO4 and Li4B2O5-Li6Si2O7-Li4P2O7) , 1989 .

[5]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[6]  R. T. Johnson,et al.  Ionic conductivity of Li5AlO4 and Li5GaO4 in moist air environments: Potential humidity sensors , 1979 .

[7]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[8]  Hong Li,et al.  High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory , 2015, Scientific Reports.

[9]  J. C. Schön,et al.  Possible existence of alkali metal orthocarbonates at high pressure. , 2006, Chemistry.

[10]  Michel Ribes,et al.  Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2SXS2 (XSi; Ge), Na2SP2S5 and Li2SGeS2 systems , 1980 .

[11]  Kazunari Yoshizawa,et al.  Lithium ion migration pathways in LiTi2(PO4)3 and related materials , 1999 .

[12]  K. Fujimura,et al.  Accelerated Materials Design of Lithium Superionic Conductors Based on First‐Principles Calculations and Machine Learning Algorithms , 2013 .

[13]  Liquan Chen,et al.  Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective , 2013 .

[14]  A. Stoneham,et al.  A model for the fast ionic diffusion in alumina-doped LiI , 1979 .

[15]  Gerbrand Ceder,et al.  Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research , 2006 .

[16]  Yue Qi,et al.  Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries , 2013 .

[17]  P. Knauth Ionic Conductor Composites: Theory and Materials , 2000 .

[18]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[19]  W. Ching,et al.  Electronic structure and optical properties of LiB sub 3 O sub 5 , 1990 .

[20]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[21]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[22]  V. I. Simonov,et al.  Atomic structure and one-dimensional ionic conductivity of lithium triborate LiB3O5 , 1991 .

[23]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[24]  Zhaoyang Sun,et al.  The nonlinear optical characteristics of a LiB3O5 crystal , 1990 .

[25]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[26]  S. Adams Relationship between bond valence and bond softness of alkali halides and chalcogenides. , 2001, Acta crystallographica. Section B, Structural science.

[27]  R. Guo,et al.  Pyroelectric, dielectric, and piezoelectric properties of LiB3O5 , 1995 .

[28]  Jie Fu Fast Li+ Ion Conduction in Li2O‐Al2O3‐TiO2‐SiO2‐P2O2 Glass‐Ceramics , 2005 .

[29]  N. Holzwarth,et al.  Li Ion Diffusion Mechanisms in the Crystalline Electrolyte γ-Li3PO4 , 2007 .

[30]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[31]  J. Winand,et al.  Nouvelles solutions solides LI(MIV)2−x(NIV)x(PO4)3 (L = Li,Na M,N = Ge,Sn,Ti,Zr,Hf) synthèse et étude par diffraction x et conductivité ionique , 1991 .

[32]  Stefan Adams,et al.  High power lithium ion battery materials by computational design , 2011 .

[33]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[34]  H. Pfeiffer,et al.  Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. , 2009, The journal of physical chemistry. A.

[35]  Peng Lu,et al.  Direct calculation of Li-ion transport in the solid electrolyte interphase. , 2012, Journal of the American Chemical Society.

[36]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[37]  Liquan Chen,et al.  Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method , 2014 .

[38]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[39]  J. Chandrasekhar,et al.  Cumulative anomeric effect: a theoretical and x-ray diffraction study of orthocarbonates , 1990 .

[40]  Eckhard Karden,et al.  Energy storage devices for future hybrid electric vehicles , 2007 .

[41]  Liquan Chen,et al.  Density Functional Investigation on Li2MnO3 , 2012 .

[42]  M. Ratner,et al.  Transport in glassy fast-ion conductors: A stud of LiAlSiO4 glass , 1988 .

[43]  H. Munakata,et al.  All-solid-state lithium battery with a three-dimensionally ordered Li1.5Al0.5Ti1.5(PO4)3 electrode , 2010 .

[44]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[45]  T. Esaka,et al.  Lithium ion conduction in substituted Li5GaO4 phases , 1986 .

[46]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[47]  M. Maurin,et al.  Etude cristallochimique compare´e et conductivite´ionique des deux varie´te´s Li2Te2O5 α et β , 1981 .

[48]  T. Esaka,et al.  Lithium ion conduction in substituted Li5MO4, M = Al, Fe , 1987 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Xia Lu,et al.  Kinetically Controlled Lithium-Staging in Delithiated LiFePO4 Driven by the Fe Center Mediated Interlayer Li–Li Interactions , 2012 .

[51]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[52]  Masayuki Nogami,et al.  Multivariate Method-Assisted Ab Initio Study of Olivine-Type LiMXO4 (Main Group M2+–X5+ and M3+–X4+) Compositions as Potential Solid Electrolytes , 2012 .