LANDSLIDE RISK MANAGEMENT USING THE MATHEMATICAL MODEL TRIGRS

Landslides are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to economic damage, social impact, and loss of human life. The identification and monitoring of landslide-prone areas are crucial to avoid fatalities. Therefore, the aims of this work are a temporal analysis of the Factor of Safety variation in Campos do Jordão, using the mathematical model TRIGRS. During the analyzed period, two heavy rainfall events were recorded in the area and triggered landslides. The results show TRIGRS efficiency in correctly identify landslide-prone areas and its applicability to become a useful tool for urban planning and early warning systems.

[1]  Diogo J. Amore,et al.  The influence of land use/land cover variability and rainfall intensity in triggering landslides: a back-analysis study via physically based models , 2020, Natural Hazards.

[2]  H. Kux,et al.  IDENTIFICAÇÃO DE ÁREAS DE SUSCETIBILIDADE A ESCORREGAMENTOS DE ENCOSTA UTILIZANDO O MODELO MATEMÁTICO SHALSTAB , 2020 .

[3]  H. Kux,et al.  Shalstab mathematical model and WorldView-2 satellite images to identification of landslide-susceptible areas , 2019, Natural Hazards.

[4]  Edwin Fabián García-Aristizábal,et al.  Implementación del modelo TRIGRS con análisis de confiabilidad para la evaluación de la amenaza a movimientos en masa superficiales detonados por lluvia , 2019, TecnoLógicas.

[5]  N. Moraci,et al.  Landslide susceptibility assessment by TRIGRS in a frequently affected shallow instability area , 2018, Landslides.

[6]  P. I. Camarinha,et al.  Stability Analysis on Urban Slopes: Case Study of an Anthropogenic-Induced Landslide in São José dos Campos, Brazil , 2018, Geotechnical and Geological Engineering.

[7]  R. Sánchez,et al.  Modelación de la contribución arbórea en análisis de susceptibilidad a deslizamientos superficiales , 2017 .

[8]  C. Ku,et al.  Transient modeling of regional rainfall-triggered shallow landslides , 2017, Environmental Earth Sciences.

[9]  M. Mergili,et al.  Does parameterization influence the performance of slope stability model results? A case study in Rio de Janeiro, Brazil , 2017, Landslides.

[10]  Javier Tomasella,et al.  Understanding shallow landslides in Campos do Jordão municipality – Brazil: disentangling the anthropic effects from natural causes in the disaster of 2000 , 2017 .

[11]  Qiang Xu,et al.  Prediction of rainfall‐induced shallow landslides in the Loess Plateau, Yan'an, China, using the TRIGRS model , 2017 .

[12]  T. M. Thu,et al.  Effect of Digital Elevation Model Resolution on Shallow Landslide Modeling Using TRIGRS , 2017 .

[13]  Tatiana Sussel Gonçalves Mendes,et al.  SIG E MODELOS DE ESCORREGAMENTOS: AVALIANDO MÉTODOS PARA REDUZIR AS INCERTEZAS DE DADOS DE SOLOS E PRECIPITAÇÃO , 2016, Revista Brasileira de Cartografia.

[14]  Rex L. Baum,et al.  Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface , 2016, Environ. Model. Softw..

[15]  Bianca Carvalho Vieira,et al.  INFLUÊNCIA DE PARÂMETROS GEOTÉCNICOS E HIDROLÓGICOS NA PREVISÃO DE ÁREAS INSTÁVEIS A ESCORREGAMENTOS TRANSLACIONAIS RASOS UTILIZANDO O MODELO TRIGRS , 2015 .

[16]  Claudia Meisina,et al.  Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS , 2015 .

[17]  Rodolfo Moreda Mendes,et al.  Real-Time Monitoring of Climactic and Geotechnical Variables during Landslides on the Slopes of Serra do Mar and Serra da Mantiqueira (São Paulo State, Brazil) , 2015 .

[18]  Lee Min Lee,et al.  Spatiotemporal regional modeling of rainfall-induced slope failure in Hulu Kelang, Malaysia , 2015, Environmental Earth Sciences.

[19]  Seung-Rae Lee,et al.  Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event , 2013 .

[20]  F. Guzzetti,et al.  Scaling properties of rainfall induced landslides predicted by a physically based model , 2013, 1306.1529.

[21]  R. Valentino,et al.  Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy , 2013 .

[22]  Yang Hong,et al.  Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina , 2011 .

[23]  C. G. D. Brasil,et al.  Plano municipal de redução de risco de Muriaé, MG , 2010 .

[24]  Leonardo Cascini,et al.  Susceptibility analysis of shallow landslides source areas using physically based models , 2010 .

[25]  Alessandro Corsini,et al.  Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy) , 2010 .

[26]  Rex L. Baum,et al.  Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework , 2008 .

[27]  Zuyu Chen,et al.  Assessment of regional rainfall-induced landslides using 3S-based hydro-geological model , 2008 .

[28]  Chen Chien-Yuan,et al.  Analysis of time-varying rainfall infiltration induced landslide , 2005 .

[29]  Isabel F. Trigo,et al.  Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation , 2005 .

[30]  Adriana Ahrendt Movimentos de massa gravitacionais - proposta de um sistema de previsão: aplicação na área urbana de Campos do Jordão - SP , 2005 .

[31]  Silvio Takashi Hiruma,et al.  A expansão urbana no planalto de Campos do Jordão: diagnóstico geomorfológico para fins de planejamento , 2004 .

[32]  Giovanni B. Crosta,et al.  Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment , 2004 .

[33]  Claudio Riccomini,et al.  NEOTECTÔNICA NO PLANALTO DE CAMPOS DO JORDÃO, SP , 2001 .

[34]  A. Guerra,et al.  Características e propriedades dos solos relevantes para os estudos pedológicos e análise dos processos erosivos , 1996 .

[35]  R. Sidle,et al.  A distributed slope stability model for steep forested basins , 1995 .

[36]  D. Montgomery,et al.  A physically based model for the topographic control on shallow landsliding , 1994 .

[37]  S. E. Amaral,et al.  Sobre o deslizamento de lama turfosa ocorrido em Campos do Jordão, SP, em agosto de 1972 , 1973 .

[38]  W. C. Krumbein : Factors of Soil Formation: A System of Quantitative Pedology , 1942 .

[39]  Bianca Carvalho Vieira,et al.  AVALIAÇÃO DA VARIAÇÃO DO FATOR DE SEGURANÇA COM O MODELO TRIGRS , 2018 .

[40]  Fabrizio de Luiz Rosito Listo MODELOS MATEMÁTICOS APLICADOS À PREVISÃO DE ESCORREGAMENTOS TRANSLACIONAIS RASOS: EXEMPLOS EM ÁREAS NATURAIS E DE RISCO , 2016 .

[41]  Maximilian Bayer,et al.  At Risk Natural Hazards Peoples Vulnerability And Disasters , 2016 .

[42]  F. Fiorillo,et al.  Space–time prediction of rainfall-induced shallow landslides through a combined probabilistic/deterministic approach, optimized for initial water table conditions , 2013, Bulletin of Engineering Geology and the Environment.

[43]  R. Müller,et al.  Natural Hazards and Earth System Sciences , 2013 .

[44]  Rex L. Baum,et al.  Modeling time-dependent areal slope stability , 2004 .

[45]  W. Z. Savage,et al.  TRIGRS - A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0 , 2002 .

[46]  D. Tarboton,et al.  Terrain Stability Mapping with SINMAP, technical description and users guide for version 1.00 , 1998 .

[47]  John Theodore Houghton,et al.  Global Warming: The Complete Briefing , 1994 .