Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations

Deterministic global methods for flowsheet optimization have almost exclusively relied on an equation-oriented formulation where all model variables are controlled by the optimizer and all model equations are considered as equality constraints, which results in very large optimization problems. A possible alternative is a reduced-space formulation similar to the sequential modular infeasible path method employed in local flowsheet optimization. This approach exploits the structure of the model equations to achieve a reduction in problem size. The optimizer only operates on a small subset of the model variables and handles only few equality constraints, while the majority is hidden in externally defined functions from which function values and relaxations for the objective function and constraints can be queried. Tight relaxations and their subgradients for these external functions can be provided through the automatic propagation of McCormick relaxations. Three steam power cycles of increasing complexity are used as case studies to evaluate the different formulations. Unlike in local optimization or in previous sequential approaches relying on interval methods, the solution of the reduced-space formulation using McCormick relaxations enables dramatic reductions in computational time compared to the conventional equation-oriented formulation. Despite the simplicity of the implemented branch-and-bound solver that does not fully exploit the tight relaxations returned by the external functions but relies on further affine relaxation at a single point using the subgradients, in some cases it can solve the reduced-space formulation significantly faster without any range reduction than the state-of-the-art solver BARON can solve the equation-oriented formulation.

[1]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[2]  Alexander Mitsos,et al.  Multivariate McCormick relaxations , 2014, J. Glob. Optim..

[3]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .

[4]  Jean-Michel Reneaume,et al.  Optimal Process Synthesis in a Modular Simulator Environment: New Formulation of the Mixed-Integer Nonlinear Programming Problem , 1995 .

[5]  Christodoulos A. Floudas,et al.  Global optimization of a MINLP process synthesis model for thermochemical based conversion of hybrid coal, biomass, and natural gas to liquid fuels , 2012, Comput. Chem. Eng..

[6]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[7]  Juan M. Zamora,et al.  Continuous global optimization of structured process systems models , 1998 .

[8]  Lorenz T. Biegler,et al.  Infeasible path optimization with sequential modular simulators , 1982 .

[9]  Paul I. Barton,et al.  Differentiable McCormick relaxations , 2016, Journal of Global Optimization.

[10]  George Tsatsaronis,et al.  Design Optimization of Power Plants by Considering Multiple Partial Load Operation Points , 2007 .

[11]  J. Warner,et al.  Combined - Cycle Gas & Steam Turbine Power Plants , 1999 .

[12]  Dieter Kraft,et al.  Algorithm 733: TOMP–Fortran modules for optimal control calculations , 1994, TOMS.

[13]  Ignacio E. Grossmann,et al.  Global superstructure optimization for the design of integrated process water networks , 2011 .

[14]  Alexander Mitsos,et al.  A double-pinch criterion for regenerative Rankine cycles , 2012 .

[15]  Christodoulos A. Floudas,et al.  A global optimization method, αBB, for process design , 1996 .

[16]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[17]  George Tsatsaronis,et al.  Optimizing the design of complex energy conversion systems by Branch and Cut , 2010, Comput. Chem. Eng..

[18]  C. Bendtsen FADBAD, a flexible C++ package for automatic differentiation - using the forward and backward method , 1996 .

[19]  Alexander Mitsos,et al.  Optimal design and operation of membrane-based oxy-combustion power plants , 2014 .

[20]  Alexander Mitsos,et al.  Convergence rate of McCormick relaxations , 2012, J. Glob. Optim..

[21]  Paul I. Barton,et al.  McCormick-Based Relaxations of Algorithms , 2009, SIAM J. Optim..

[22]  Matthew D. Stuber,et al.  Generalized McCormick relaxations , 2011, J. Glob. Optim..

[23]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[24]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[25]  I. Grossmann,et al.  Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis , 1988 .

[26]  Alexander Mitsos,et al.  Convergence Order of McCormick Relaxations of LMTD function in Heat Exchanger Networks , 2016 .

[27]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[28]  Paul I. Barton,et al.  Global optimization of bounded factorable functions with discontinuities , 2013, J. Glob. Optim..

[29]  Edward S. Rubin,et al.  An MINLP process synthesizer for a sequential modular simulator , 1992 .

[30]  Matthew D. Stuber,et al.  Convex and concave relaxations of implicit functions , 2015, Optim. Methods Softw..

[31]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[32]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[33]  Efstratios N. Pistikopoulos,et al.  A Reduced Space Branch and Bound Algorithm for Global optimization , 1997, J. Glob. Optim..

[34]  S. Balendra,et al.  A comparison of flowsheet solving strategies using interval global optimisation methods , 2003 .

[35]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[36]  Edward M. B. Smith,et al.  Global optimisation of nonconvex MINLPs , 1997 .

[37]  Ruth Misener,et al.  Optimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference , 2016, Comput. Chem. Eng..

[38]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[39]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[40]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[41]  Lorenz T. Biegler,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2018 .

[42]  Paul I. Barton,et al.  Reverse propagation of McCormick relaxations , 2015, Journal of Global Optimization.

[43]  Nikolaos V. Sahinidis,et al.  A branch-and-reduce approach to global optimization , 1996, J. Glob. Optim..

[44]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[45]  R. P. Byrne,et al.  Global Optimisation of Chemical Process Flowsheets , 2002 .

[46]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[47]  I. D. L. Bogle,et al.  Global optimization of modular process flowsheets , 2000 .

[48]  Ian David Lockhart Bogle,et al.  Modular global optimisation in chemical engineering , 2009, J. Glob. Optim..

[49]  Stefano Bracco,et al.  Exergetic optimization of single level combined gas–steam power plants considering different objective functions , 2010 .

[50]  A. Mitsos,et al.  Infeasible Path Global Flowsheet Optimization Using McCormick Relaxations , 2017 .

[51]  Fabio Schoen,et al.  Global Optimization: Theory, Algorithms, and Applications , 2013 .

[52]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[53]  John J.J. Chen Comments on improvements on a replacement for the logarithmic mean , 1987 .

[54]  Sergio Mussati,et al.  A discrete and continuous mathematical model for the optimal synthesis and design of dual pressure heat recovery steam generators coupled to two steam turbines , 2016 .

[55]  Ignacio E. Grossmann,et al.  Global optimization algorithm for heat exchanger networks , 1993 .

[56]  Alexander Mitsos,et al.  Convergence analysis of multivariate McCormick relaxations , 2016, J. Glob. Optim..

[57]  José Luz Silveira,et al.  Thermoeconomic analysis method for optimization of combined heat and power systems , 2000 .

[58]  I. D. L. Bogle,et al.  Global optimisation of constrained non-convex programs using reformulation and interval analysis , 1999 .

[59]  R. Kehlhofer,et al.  Combined-cycle gas and steam turbine power plants. 2. edition , 1991 .

[60]  Antonio Rovira,et al.  Thermoeconomic optimization of combined cycle gas turbine power plants using genetic algorithms , 2003 .