Torsion-free abelian groups with optimal Scott families
暂无分享,去创建一个
[1] Rodney G. Downey,et al. Effectively categorical abelian groups , 2013 .
[2] Joaquín Pascual,et al. Infinite Abelian Groups , 1970 .
[3] G. Higman. Subgroups of finitely presented groups , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[4] B. L. Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen , 1930 .
[5] R. Baer,et al. Abelian groups without elements of finite order , 1937 .
[6] Rodney G. Downey,et al. THE ISOMORPHISM PROBLEM FOR TORSION-FREE ABELIAN GROUPS IS ANALYTIC COMPLETE. , 2008 .
[7] C. Ash,et al. Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees , 1986 .
[8] N. G. Khisamiev,et al. Chapter 17 Constructive abelian groups , 1998 .
[9] Julia F. Knight,et al. Classes of Ulm type and coding rank-homogeneous trees in other structures , 2011, The Journal of Symbolic Logic.
[10] S. Goncharov,et al. Computable Structure and Non-Structure Theorems , 2002 .
[11] Julia F. Knight,et al. Isomorphism relations on computable structures , 2012, J. Symb. Log..
[12] A. Nerode,et al. Effective content of field theory , 1979 .
[13] A. I. Mal'tsev. CONSTRUCTIVE ALGEBRAS I , 1961 .
[14] N. A. Bazhenov. Δ20-Categoricity of Boolean Algebras , 2014 .
[15] R. Downey. Chapter 14 Computability theory and linear orderings , 1998 .
[16] Alexander G. Melnikov,et al. Computable Abelian Groups , 2014, Bull. Symb. Log..
[17] Charles F. D. McCoy. Delta20 - categoricity in Boolean algebras and linear orderings , 2003, Ann. Pure Appl. Log..
[18] Kyle Riggs. The decomposability problem for torsion-free abelian groups is analytic-complete , 2013 .
[19] Rodney G. Downey,et al. The complexity of computable categoricity , 2015 .
[20] Matthew Harrison-Trainor,et al. Computable Functors and Effective interpretability , 2017, J. Symb. Log..
[21] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[22] Rodney G. Downey,et al. Iterated effective embeddings of abelian p-groups , 2014, Int. J. Algebra Comput..
[23] Victor A. Ocasio. Computability in the class of Real Closed Fields , 2014 .
[24] A. Nerode,et al. Recursively enumerable vector spaces , 1977 .
[25] Alexander G. Melnikov,et al. Jump degrees of torsion-free abelian groups , 2012, The Journal of Symbolic Logic.
[26] Asher M. Kach,et al. Limitwise monotonic functions, sets, and degrees on computable domains , 2010, J. Symb. Log..
[27] J. Shepherdson,et al. Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[28] Russell G. Miller,et al. Turing degree spectra of differentially Closed Fields , 2017, J. Symb. Log..
[29] Ewan J. Barker. Back and Forth Relations for Reduced Abelian p-Groups , 1995, Ann. Pure Appl. Log..
[30] Wesley Calvert,et al. The isomorphism problem for computable Abelian p-groups of bounded length , 2004, Journal of Symbolic Logic.
[31] Julia F. Knight,et al. Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..
[32] Richard Lawrence Smith,et al. Two theorems on autostability in p-Groups , 1981 .
[33] M. Rabin. Computable algebra, general theory and theory of computable fields. , 1960 .
[34] L. Pontrjagin,et al. The Theory of Topological Commutative Groups , 1934 .
[35] A. V. Yakovlev. Torsion free Abelian groups of finite rank and their direct decompositions , 1991 .
[36] N. G. Khisamiev,et al. Effectively totally decomposable abelian groups , 1997 .
[37] Alexander G. Melnikov. 0"-Categorical Completely Decomposable Torsion-Free Abelian Groups , 2009, CiE.
[38] Greg Hjorth,et al. The isomorphism relation on countable torsion free abelian groups , 2002 .
[39] Arkadii M. Slinko,et al. Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..
[40] Alexander G. Melnikov. New Degree Spectra of Abelian Groups , 2017, Notre Dame J. Formal Log..
[41] Paul M. Weichsel,et al. ON p-ABELIAN GROUPS , 1967 .
[42] A A Fomin. TORSION-FREE ABELIAN GROUPS OF RANK 3 , 1991 .
[43] Rodney G. Downey,et al. Computable completely decomposable groups , 2014 .
[44] MATTHEW HARRISON-TRAINOR,et al. Independence in computable algebra , 2014, 1409.7747.
[45] Rodney G. Downey,et al. Uniformity in Computable Structure Theory , 2001 .
[46] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .