Facet-Based Surfaces for 3D Mesh Generation

A synthesis of various algorithms and techniques used for modeling and evaluating facet-based surfaces for 3D surface mesh generation algorithms is presented, including implementation details of how these techniques are used within an existing mesh generation toolkit. An object oriented data representation for facet-based surfaces is described. Numerical techniques for describing G continuous curves and surfaces from triangles forming quartic Bezier triangle patches is presented. A combination of spatial searching and minimization techniques to solve the smooth surface projection problem are described. Examples and performance of the proposed methods are put in context with relevant surface mesh generation problems.

[1]  E. Sturler,et al.  Surface Parameterization for Meshing by Triangulation Flattenin , 2000 .

[2]  Steven J. Owen,et al.  Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition , 1998, IMR.

[3]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[4]  David R. White,et al.  Automatic Scheme Selection for Toolkit Hex Meshing , 2000 .

[5]  Mihailo Ristic,et al.  Efficient registration of NURBS geometry , 1997, Image Vis. Comput..

[6]  David R. White,et al.  Mesh-Based Geometry: A Systematic Approach To Constructing Geometry From A Finite Element Mesh , 2001, IMR.

[7]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[8]  Pascal J. Frey,et al.  About Surface Remeshing , 2000, IMR.

[9]  Praveen Kashyap Geometric interpretation of continuity over triangular domains , 1998, Comput. Aided Geom. Des..

[10]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[11]  Gerald Farin,et al.  Curves and surfaces for cagd , 1992 .

[12]  Ashraf El-Hamalawi,et al.  Mesh Generation – Application to Finite Elements , 2001 .

[13]  A. Guttman,et al.  A Dynamic Index Structure for Spatial Searching , 1984, SIGMOD 1984.

[14]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[15]  David R. White,et al.  The Cleave and Fill Tool: An All-Hexahedral Refinement Algorithm for Swept Meshes , 2000, IMR.

[16]  Steven E. Benzley,et al.  GENERALIZED 3-D PAVING : AN AUTOMATED QUADRILATERAL SURFACE MESH GENERATION ALGORITHM , 1996 .

[17]  Timothy J. Tautges,et al.  The Common Geometry Module (CGM): A Generic, Extensible Geometry Interface , 2000, IMR.

[18]  Jean-Christophe Cuillière An adaptive method for the automatic triangulation of 3D parametric surfaces , 1998, Comput. Aided Des..

[19]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[20]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[21]  Patrick M. Knupp Next-Generation Sweep Tool: A Method for Generating All-Hex Meshes on Two-and-One-Half Dimensional Geometries , 1998, IMR.

[22]  Dereck S. Meek,et al.  A triangular G1 patch from boundary curves , 1996, Comput. Aided Des..

[23]  Jon Louis Bentley,et al.  Data Structures for Range Searching , 1979, CSUR.

[24]  A. She SURFACE PARAMETERIZATION FOR MESHING BY TRIANGULATION FLATTENING , 2000 .

[25]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .