Malaria parasites both repress host CXCL10 and use it as a cue for growth acceleration

[1]  M. Galinski,et al.  Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-kB facilitating parasite cytoadherence , 2020, Nature Communications.

[2]  J. Rehwinkel,et al.  RIG-I-like receptors: their regulation and roles in RNA sensing , 2020, Nature Reviews Immunology.

[3]  J. Inal,et al.  Plasma mEV levels in Ghanain malaria patients with low parasitaemia are higher than those of healthy controls, raising the potential for parasite markers in mEVs as diagnostic targets , 2019, Journal of extracellular vesicles.

[4]  D. Hansen,et al.  CD14+ monocytes are the main leucocytic sources of CXCL10 in response to Plasmodium falciparum , 2019, Parasitology.

[5]  P. Aide,et al.  Changing plasma cytokine, chemokine and growth factor profiles upon differing malaria transmission intensities , 2019, Malaria Journal.

[6]  T. Jensen,et al.  Nuclear sorting of RNA , 2019, Wiley interdisciplinary reviews. RNA.

[7]  M. Wolkers,et al.  Human T cells employ conserved AU‐rich elements to fine‐tune IFN‐γ production , 2019, bioRxiv.

[8]  A. Bowie,et al.  Toll-like receptor 2–dependent endosomal signaling by Staphylococcus aureus in monocytes induces type I interferon and promotes intracellular survival , 2019, The Journal of Biological Chemistry.

[9]  M. Lawson,et al.  The RNA-binding Protein ELAVL1 Regulates GnRH Receptor Expression and the Response to GnRH. , 2019, Endocrinology.

[10]  R. Koenen,et al.  Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2 , 2019, The Journal of Biological Chemistry.

[11]  L. Coin,et al.  Modelling pathogen load dynamics to elucidate mechanistic determinants of host-Plasmodium falciparum interactions , 2019, Nature Microbiology.

[12]  R. Schneider,et al.  Muscle development and regeneration controlled by AUF1-mediated stage-specific degradation of fate-determining checkpoint mRNAs , 2019, Proceedings of the National Academy of Sciences.

[13]  M. Olivier,et al.  Modulation of Host-Pathogen Communication by Extracellular Vesicles (EVs) of the Protozoan Parasite Leishmania , 2019, Front. Cell. Infect. Microbiol..

[14]  Sidney R. Cohen,et al.  Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses , 2019, Cellular microbiology.

[15]  N. Cherradi,et al.  Targeting AU-rich element-mediated mRNA decay with a truncated active form of the zinc-finger protein TIS11b/BRF1 impairs major hallmarks of mammary tumorigenesis , 2019, Oncogene.

[16]  L. Santambrogio,et al.  Message in a vesicle – trans-kingdom intercommunication at the vector–host interface , 2019, Journal of Cell Science.

[17]  T. Bousema,et al.  Gametocyte Sex Ratio: The Key to Understanding Plasmodium falciparum Transmission? , 2019, Trends in parasitology.

[18]  Dennis C. Ko,et al.  Pathogen Evasion of Chemokine Response Through Suppression of CXCL10 , 2019, bioRxiv.

[19]  N. Regev‐Rudzki,et al.  Extracellular vesicles in parasite survival , 2019, Science.

[20]  G. Grau,et al.  Interplay of extracellular vesicles and other players in cerebral malaria pathogenesis. , 2019, Biochimica et biophysica acta. General subjects.

[21]  B. Ren,et al.  Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation. , 2019, Cancer cell.

[22]  M. Reczko,et al.  Divergent Innate and Epithelial Functions of the RNA-Binding Protein HuR in Intestinal Inflammation , 2018, Front. Immunol..

[23]  G. Grau,et al.  Extracellular vesicles as mediators of immunopathology in infectious diseases , 2018, Immunology and cell biology.

[24]  J. González,et al.  Characterization of Plasmodium vivax Proteins in Plasma-Derived Exosomes From Malaria-Infected Liver-Chimeric Humanized Mice , 2018, Front. Microbiol..

[25]  Z. Porat,et al.  Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry , 2018, Front. Immunol..

[26]  S. Whelan,et al.  STING-dependent translation inhibition restricts RNA virus replication , 2018, Proceedings of the National Academy of Sciences.

[27]  K. Khabar,et al.  The AU-rich element landscape across human transcriptome reveals a large proportion in introns and regulation by ELAVL1/HuR. , 2018, Biochimica et biophysica acta. Gene regulatory mechanisms.

[28]  P. Schlaermann,et al.  How to rewire the host cell: A home improvement guide for intracellular bacteria , 2017, The Journal of cell biology.

[29]  Lesley Cheng,et al.  Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors , 2017, Nature Communications.

[30]  Tala Bakheet,et al.  ARED-Plus: an updated and expanded database of AU-rich element-containing mRNAs and pre-mRNAs , 2017, Nucleic Acids Res..

[31]  K. Matuschewski,et al.  Cytokines and Chemokines in Cerebral Malaria Pathogenesis , 2017, Front. Cell. Infect. Microbiol..

[32]  T. Fujita,et al.  RIG-I-Like Receptors and Type I Interferonopathies. , 2017, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[33]  M. Stone,et al.  Mechanisms of Regulation of the Chemokine-Receptor Network , 2017, International journal of molecular sciences.

[34]  C. Huttenhower,et al.  Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria , 2016, Nature Communications.

[35]  G. Hartmann,et al.  Discriminating self from non-self in nucleic acid sensing , 2016, Nature Reviews Immunology.

[36]  M. Gack,et al.  Viral evasion of intracellular DNA and RNA sensing , 2016, Nature Reviews Microbiology.

[37]  Andrea Tanzer,et al.  Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution , 2016, Molecular systems biology.

[38]  Nicholas T. Ingolia Ribosome Footprint Profiling of Translation throughout the Genome , 2016, Cell.

[39]  D. Pegtel,et al.  Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery , 2016, Microbiology and Molecular Reviews.

[40]  L. Birkholtz,et al.  Resisting resistance: is there a solution for malaria? , 2016, Expert opinion on drug discovery.

[41]  Catherine Q Nie,et al.  Monocyte- and Neutrophil-Derived CXCL10 Impairs Efficient Control of Blood-Stage Malaria Infection and Promotes Severe Disease , 2016, The Journal of Immunology.

[42]  M. Sharon,et al.  The Parkinson’s-associated protein DJ-1 regulates the 20S proteasome , 2015, Nature Communications.

[43]  G. Cheng,et al.  Positive Feedback Regulation of Type I IFN Production by the IFN-Inducible DNA Sensor cGAS , 2015, The Journal of Immunology.

[44]  Yong Cheng,et al.  Exosomes and other extracellular vesicles in host–pathogen interactions , 2015, EMBO reports.

[45]  O. Elemento,et al.  ELAVL1 modulates transcriptome-wide miRNA binding in murine macrophages. , 2014, Cell reports.

[46]  S. Lorkowski,et al.  Highly Efficient Transfection of Human THP-1 Macrophages by Nucleofection , 2014, Journal of visualized experiments : JoVE.

[47]  R. Vazirinejad,et al.  The Biological Functions, Structure and Sources of CXCL10 and Its Outstanding Part in the Pathophysiology of Multiple Sclerosis , 2014, Neuroimmunomodulation.

[48]  N. Hunt,et al.  Production, Fate and Pathogenicity of Plasma Microparticles in Murine Cerebral Malaria , 2014, PLoS pathogens.

[49]  C. Sihlbom,et al.  Pro-inflammatory cytokines can act as intracellular modulators of commensal bacterial virulence , 2013, Open Biology.

[50]  C. Akdis,et al.  MicroRNAs: Essential players in the regulation of inflammation. , 2013, The Journal of allergy and clinical immunology.

[51]  Danny W. Wilson,et al.  Cell-Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles , 2013, Cell.

[52]  M. Toner,et al.  Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. , 2013, Cell host & microbe.

[53]  M. Arababadi,et al.  CXCL10 Activities, Biological Structure, and Source Along with Its Significant Role Played in Pathophysiology of Type I Diabetes Mellitus , 2013, Inflammation.

[54]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[55]  F. Gebauer,et al.  Translational control by 3′-UTR-binding proteins , 2012, Briefings in functional genomics.

[56]  Nahum Sonenberg,et al.  Host Translation at the Nexus of Infection and Immunity , 2012, Cell Host & Microbe.

[57]  E. Troemel Host detection of pathogen-induced translational inhibition: a new pathogen-specific branch of the innate immune system? , 2012, Future microbiology.

[58]  G. Meister,et al.  Regulation of microRNA biogenesis and function , 2012, Thrombosis and Haemostasis.

[59]  M. Dimitriou,et al.  Myeloid cell expression of the RNA-binding protein HuR protects mice from pathologic inflammation and colorectal carcinogenesis. , 2012, The Journal of clinical investigation.

[60]  John W. Beaber,et al.  Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis , 2011, Proceedings of the National Academy of Sciences.

[61]  J. Hibbert,et al.  CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications , 2011, Cytokine & Growth Factor Reviews.

[62]  N. Sonenberg,et al.  Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection. , 2011, Cell host & microbe.

[63]  A. Dash,et al.  CXCL4 and CXCL10 Predict Risk of Fatal Cerebral Malaria , 2011, Disease markers.

[64]  M. Gorospe,et al.  Chemokine Transcripts as Targets of the RNA-Binding Protein HuR in Human Airway Epithelium , 2011, The Journal of Immunology.

[65]  A. Bowie,et al.  IFI16 is an innate immune sensor for intracellular DNA , 2010, Nature Immunology.

[66]  Yinglin Xia,et al.  The inflammatory cytokine tumor necrosis factor modulates the expression of Salmonella typhimurium effector proteins , 2010, Journal of Inflammation.

[67]  L. Wise,et al.  The chemokine‐binding protein encoded by the poxvirus orf virus inhibits recruitment of dendritic cells to sites of skin inflammation and migration to peripheral lymph nodes , 2010, Cellular microbiology.

[68]  H. Jo,et al.  HuR regulates the expression of stress-sensitive genes and mediates inflammatory response in human umbilical vein endothelial cells , 2010, Proceedings of the National Academy of Sciences.

[69]  B. Ryffel,et al.  Parasite-Derived Plasma Microparticles Contribute Significantly to Malaria Infection-Induced Inflammation through Potent Macrophage Stimulation , 2010, PLoS pathogens.

[70]  E. Fischer,et al.  Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. , 2009, Blood.

[71]  J. Yates,et al.  The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification , 2009, Proceedings of the National Academy of Sciences.

[72]  S. Srikantan,et al.  HuR recruits let-7/RISC to repress c-Myc expression. , 2009, Genes & development.

[73]  M. Norman,et al.  IP-10-Mediated T Cell Homing Promotes Cerebral Inflammation over Splenic Immunity to Malaria Infection , 2009, PLoS pathogens.

[74]  V. Aidinis,et al.  The RNA-Binding Protein Elavl1/HuR Is Essential for Placental Branching Morphogenesis and Embryonic Development , 2009, Molecular and Cellular Biology.

[75]  M. Burdick,et al.  Antimicrobial Effects of Interferon-Inducible CXC Chemokines against Bacillus anthracis Spores and Bacilli , 2009, Infection and Immunity.

[76]  R. Ned,et al.  Malaria Journal Plasma Ip-10, Apoptotic and Angiogenic Factors Associated with Fatal Cerebral Malaria in India , 2008 .

[77]  Venkatachalam Udhayakumar,et al.  Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children , 2007, Malaria Journal.

[78]  Gunther Hartmann,et al.  5'-Triphosphate RNA Is the Ligand for RIG-I , 2006, Science.

[79]  Krishna Shankara Narayanan,et al.  Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation , 2006, Proceedings of the National Academy of Sciences.

[80]  M. Gorospe,et al.  Translational Control of Cytochrome c by RNA-Binding Proteins TIA-1 and HuR , 2006, Molecular and Cellular Biology.

[81]  A. Alcamí,et al.  Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity , 2005, The Journal of experimental medicine.

[82]  S. Varadharajan,et al.  Localization of ferrochelatase in Plasmodium falciparum. , 2004, The Biochemical journal.

[83]  G. McFadden,et al.  Analysis of an orf virus chemokine-binding protein: Shifting ligand specificities among a family of poxvirus viroceptors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[84]  D. Hoover,et al.  Many chemokines including CCL20/MIP‐3α display antimicrobial activity , 2003 .

[85]  B. Williams,et al.  Heterogeneity in Control of mRNA Stability by AU-rich Elements* , 2003, The Journal of Biological Chemistry.

[86]  S. Dhanasekaran,et al.  Import of host δ-aminolevulinate dehydratase into the malarial parasite: Identification of a new drug target , 2000, Nature Medicine.

[87]  I. Lafon,et al.  Developmental expression of AUF1 and HuR, two c-myc mRNA binding proteins , 1998, Oncogene.

[88]  T. Triglia,et al.  Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[89]  W Zhang,et al.  Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1 , 1993, Molecular and cellular biology.

[90]  J. Ravetch,et al.  Biochemical characterization of a gamma interferon-inducible cytokine (IP-10) , 1987, The Journal of experimental medicine.

[91]  J. Eaton,et al.  Malaria parasites adopt host cell superoxide dismutase. , 1983, Science.

[92]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[93]  Z. Porat,et al.  Identification and classification of the malaria parasite blood developmental stages, using imaging flow cytometry. , 2017, Methods.

[94]  G. Grau,et al.  Severe malaria: what's new on the pathogenesis front? , 2017, International Journal of Parasitology.

[95]  M. Gagliardi,et al.  RIP: RNA Immunoprecipitation. , 2016, Methods in molecular biology.

[96]  W. de Souza,et al.  Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. , 2009, Microbes and infection.

[97]  D. Hoover,et al.  Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. , 2003, Journal of leukocyte biology.